Package 'CAMeRa'

Title: CAMeRa (Cross Ancestral Mendelian Randomisation)
Description: CAMERA estimates joint causal effect in multiple ancestries and detects pleiotropy via the zero relevance model.
Authors: Yoonsu Cho [aut], Gibran Hemani [aut, cre] , Tom Palmer [aut]
Maintainer: Gibran Hemani <[email protected]>
License: MIT + file LICENSE
Version: 0.1.0
Built: 2024-12-30 03:51:54 UTC
Source: https://github.com/MRCIEU/CAMERA

Help Index


R6 class for CAMERA

Description

A simple wrapper function. Using a summary set, identify set of instruments for the traits, and peform SEM MR to test the association across the population.

Methods

Public methods


Method import()

Migrate the results from a previous CAMERA

Usage
CAMERA$import(x)
Arguments
x

R6 Environment created for CAMERA. Default = x


Method assign()

Usage
CAMERA$assign(...)

Method import_from_local()

Usage
CAMERA$import_from_local(
  instrument_raw,
  instrument_outcome,
  instrument_regions,
  instrument_outcome_regions,
  exposure_ids,
  outcome_ids,
  pops,
  ...
)

Method new()

Create a new dataset and initialise an R interface

Usage
CAMERA$new(
  exposure_ids = NULL,
  outcome_ids = NULL,
  pops = NULL,
  bfiles = NULL,
  plink = NULL,
  radius = NULL,
  clump_pop = NULL,
  x = NULL
)
Arguments
exposure_ids

Exposures IDs obtained from IEU GWAS database (https://gwas.mrcieu.ac.uk/) for each population

outcome_ids

Outcome IDs obtained from IEU GWAS database (https://gwas.mrcieu.ac.uk/) for each population

pops

Ancestry information for each population (i.e. AFR, AMR, EUR, EAS, SAS)

bfiles

Locations of LD reference files for each population (Download from: http://fileserve.mrcieu.ac.uk/ld/1kg.v3.tgz)

plink

Location of executable plink (ver.1.90 is recommended)

radius

Genomic window size to extract SNPs

clump_pop

Reference population for clumping

x

Import data where available


Method instrument_heterogeneity()

Usage
CAMERA$instrument_heterogeneity(
  instrument = self$instrument_raw,
  alpha = "bonferroni",
  method = "ivw",
  outlier_removal = FALSE
)

Method estimate_instrument_specificity()

Usage
CAMERA$estimate_instrument_specificity(
  instrument,
  alpha = "bonferroni",
  winnerscurse = FALSE
)

Method replication_evaluation()

Usage
CAMERA$replication_evaluation(
  instrument = self$instrument_raw,
  ld = self$ld_matrices
)

Method check_phenotypes()

Usage
CAMERA$check_phenotypes(ids = self$exposure_ids)

Method cross_estimate()

Usage
CAMERA$cross_estimate(dat = self$harmonised_dat)

Method plot_cross_estimate()

Usage
CAMERA$plot_cross_estimate(est = self$mrres, qj_alpha = 0.05)

Method extract_instruments()

Usage
CAMERA$extract_instruments(exposure_ids = self$exposure_ids, ...)

Method extract_instrument_regions()

Usage
CAMERA$extract_instrument_regions(
  radius = self$radius,
  instrument_raw = self$instrument_raw,
  exposure_ids = self$exposure_ids
)

Method scan_regional_instruments()

Usage
CAMERA$scan_regional_instruments(
  instrument_raw = self$instrument_raw,
  instrument_regions = self$instrument_regions
)

Method plot_regional_instruments_maxz()

Usage
CAMERA$plot_regional_instruments_maxz(
  instrument_region_zscores = self$instrument_region_zscores,
  instruments = self$instrument_raw,
  region = 1:min(10, nrow(instruments)),
  comparison = FALSE
)

Method regional_ld_matrices()

Usage
CAMERA$regional_ld_matrices(
  instrument_regions = self$instrument_regions,
  bfiles = self$bfiles,
  pops = self$pops,
  plink = self$plink
)

Method susie_finemap_regions()

Usage
CAMERA$susie_finemap_regions(
  dat = self$instrument_regions,
  ld = self$ld_matrices
)

Method paintor_finemap_regions()

Usage
CAMERA$paintor_finemap_regions(
  region = self$instrument_regions,
  ld = self$ld_matrices,
  PAINTOR = "PAINTOR",
  workdir = tempdir()
)

Method MsCAVIAR_finemap_regions()

Usage
CAMERA$MsCAVIAR_finemap_regions(
  region = self$instrument_regions,
  ld = self$ld_matrices,
  MsCAVIAR = "MsCAVIAR",
  workdir = tempdir()
)

Method fema_regional_instruments()

Usage
CAMERA$fema_regional_instruments(
  method = "fema",
  instrument_regions = self$instrument_regions,
  instrument_raw = self$instrument_raw,
  n = self$exposure_metadata$sample_size
)

Method plot_regional_instruments()

Usage
CAMERA$plot_regional_instruments(
  region,
  instrument_regions = self$instrument_regions,
  meta_analysis_regions = self$instrument_fema_regions
)

Method get_metadata()

Usage
CAMERA$get_metadata(
  exposure_ids = self$exposure_ids,
  outcome_ids = self$outcome_ids
)

Method estimate_instrument_heterogeneity_per_variant()

Usage
CAMERA$estimate_instrument_heterogeneity_per_variant(dat = self$harmonised_dat)

Method mrgxe()

Usage
CAMERA$mrgxe(
  dat = self$harmonised_dat,
  variant_list = subset(self$instrument_heterogeneity_per_variant, Qfdr < 0.05)$SNP,
  nboot = 100
)

Method mrgxe_plot()

Usage
CAMERA$mrgxe_plot(mrgxe_res = self$mrgxe_res)

Method mrgxe_plot_variant()

Usage
CAMERA$mrgxe_plot_variant(
  variant = self$mrgxe_res %>% dplyr::filter(p.adjust(a_pval, "fdr") < 0.05) %>% {
  
      .$SNP
 },
  dat = self$harmonised_dat
)

Method make_outcome_data()

Usage
CAMERA$make_outcome_data(exp = self$instrument_raw, p_exp = 0.05/nrow(exp))

Method make_outcome_local()

Usage
CAMERA$make_outcome_local(
  exp = self$instrument_raw,
  out = self$instrument_outcome_regions,
  p_exp = 0.05/nreow(exp)
)

Method harmonise()

Usage
CAMERA$harmonise(exp = self$instrument_raw, out = self$instrument_outcome)

Method set_summary()

Usage
CAMERA$set_summary()

Method pleiotropy()

Usage
CAMERA$pleiotropy(harmonised_dat = self$harmonised_dat, mrres = self$mrres)

Method plot_pleiotropy()

Usage
CAMERA$plot_pleiotropy(dat = self$pleiotropy_outliers)

Method plot_pleiotropy_heterogeneity()

Usage
CAMERA$plot_pleiotropy_heterogeneity(
  dat = self$pleiotropy_Q_outliers,
  pthresh = 0.05
)

Method perform_basic_sem()

Usage
CAMERA$perform_basic_sem(harmonised_dat = self$harmonised_dat_sem)

Method runsem()

Usage
CAMERA$runsem(model, data, modname)

Method standardise_data()

Usage
CAMERA$standardise_data(
  dat = self$instrument_raw,
  standardise_unit = FALSE,
  standardise_scale = FALSE,
  scaling_method = "simple_mode"
)

Method clone()

The objects of this class are cloneable with this method.

Usage
CAMERA$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


CAMERA_local class

Description

A simple wrapper function for importing data from local files for use with the CAMERA class.

Methods

Public methods


Method new()

Create a new dataset and initialise an R interface

Usage
CAMERA_local$new(
  metadata,
  ld_ref,
  plink_bin,
  mc.cores = 1,
  radius = 25000,
  pthresh = 5e-08,
  minmaf = 0.01
)
Arguments
metadata

Data frame with information about the data. One row per dataset. See details for info on columns

ld_ref

Data frame with two columns - pop = population (referencing the pop values in metadata), bfile = path to plink file for that reference

plink_bin

Location of executable plink (ver.1.90 is recommended)

radius

Genomic window size to extract SNPs

pthresh

P-value threshold for instrument inclusion

minmaf

Minimum allelel frequency per dataset

clump_pop

Reference population for clumping


Method standardise()

Usage
CAMERA_local$standardise(
  d,
  ea_col = "ea",
  oa_col = "oa",
  beta_col = "beta",
  eaf_col = "eaf",
  chr_col = "chr",
  pos_col = "pos",
  vid_col = "vid"
)

Method read_file()

Usage
CAMERA_local$read_file(m, minmaf = 0.01)

Method pool_tophits()

Usage
CAMERA_local$pool_tophits(
  rawdat,
  tophits,
  metadata,
  radius = 250000,
  pthresh = 5e-08,
  mc.cores = 10
)

Method organise_data()

Usage
CAMERA_local$organise_data(
  metadata = self$metadata,
  plink_bin = self$plink_bin,
  ld_ref = self$ld_ref,
  pthresh = self$pthresh,
  minmaf = self$minmaf,
  radius = self$radius,
  mc.cores = self$mc.cores
)

Method fixed_effects_meta_analysis_fast()

Usage
CAMERA_local$fixed_effects_meta_analysis_fast(beta_mat, se_mat)

Method organise()

Usage
CAMERA_local$organise()

Method clone()

The objects of this class are cloneable with this method.

Usage
CAMERA_local$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


Perform MR GxE

Description

For a single variant estiamted in different sub groups.

Usage

egger_bootstrap(b_gx, se_gx, b_gy, se_gy, nboot = 1000)

Arguments

b_gx

Vector of instrument-exposure associations, one for each sub group

se_gx

Vector of standard errors to b_gx

b_gy

Vector of instrument-outcome associations, one for each sub group

se_gy

Vector of standard errors for b_gy

nboot

Number of bootstraps. Default=1000

Details

Estimate the degree of pleiotropy using MR GxE. This method uses a negative control type approach based on an assumption that the instrument-exposure association is uncorrelated with the pleiotropic effect. Therefore, as the instrument-exposure association reduces in magnitude, the effect on the outcome will reduce towards an intercept term which represents the pleiotropic effect.

Standard errors are obtained from parametric bootstrap

Value

List

  • a = intercept estimate (pleiotropy)

  • b = slope estimate (b_iv effect)

  • a_se = standard error of intercept

  • b_se = standard error of slope

  • a_pval = p-value of intercept estimate

  • b_pval = p-value of slope estimate

  • a_mean = mean value of intercept from bootstraps

  • b_mean = mean value of slope estimates from bootstraps


Perform fixed effects meta analysis for one association

Description

Perform fixed effects meta analysis for one association

Usage

fixed_effects_meta_analysis(beta_vec, se_vec, infl = 10000)

Arguments

beta_vec

Vector of betas

se_vec

Vector of ses

infl

Inflation factor - how much larger is the estimate than the estimate of the tightest SE - for use in removing unreliable estimates

Value

list of results


Fixed effects meta analysis vectorised across multiple SNPs

Description

Assumes effects across studies are all on the same scale

Usage

fixed_effects_meta_analysis_fast(beta_mat, se_mat)

Arguments

beta_mat

Matrix of betas - rows are SNPs, columns are studies

se_mat

Matrix of SEs - rows are SNPs, columns are studies

Value

list of meta analysis betas and SEs


Identify blown up estimates

Description

Sometimes estimates appear unstable. They are likely unreliable and best to not use for heterogeneity analyses etc.

Usage

identify_blownup_estimates(b, se, infl)

Arguments

b

Vector of betas

se

Vector of SEs

infl

Inflation factor - how much larger is the estimate than the estimate of the tightest SE

Value

index of betas to remove


Estimate expected vs observed replication of effects between discovery and replication datasets

Description

Taken from Okbay et al 2016. Under the assumption that all discovery effects are unbiased, what fraction of associations would replicate in the replication dataset, given the differential power of the discovery and replication datasets. Uses standard error of the replication dataset to account for differences in sample size and distribution of independent variable

Usage

prop_overlap(b_disc, b_rep, se_disc, se_rep, alpha)

Arguments

b_disc

Vector of discovery betas

b_rep

Vector of replication betas

se_disc

Vector of discovery standard errors

se_rep

Vector of replication standard errors

alpha

Nominal replication significance threshold

Value

List of results

  • res: aggregate expected replication rate vs observed replication rate

  • variants: per variant expected replication rates


P-value based meta analysis

Description

Uses weighted Z scores following advice from https://onlinelibrary.wiley.com/doi/full/10.1111/j.1420-9101.2005.00917.x Suggested weights are 1/se^2 However se is scale dependent and it would be ideal to avoid scale issues at this stage So using instead calculate expected se based on n and af. Assumes continuous traits in the way it uses n (i.e. not case control aware at the moment)

Usage

z_meta_analysis(beta_mat, se_mat, n, eaf_mat)

Arguments

beta_mat

Matrix of betas - rows are SNPs, columns are studies

se_mat

Matrix of SEs - rows are SNPs, columns are studies

n

Vector of sample sizes for each

eaf_mat

Matrix of allele frequencies - rows are SNPs, columns are studies