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ADNI ADNI Data.
Description

A dataset collected from ADNI project for MR analysis in the CIV paper. It contains 491 subjects,
whose phenotypes (A/3, Ptau, Ttau, Glucose levels) and Alzheimer’s status were collected. 20 SNPs
associated with A were selected and their dosage of the 491 subjects were recorded. This data file
is extracted to serve as an example to estimate the causal effect of A on progression of Alzheimer’s

disease while accounting for potential pleiotropic effect from other phenotypes.

Usage

data(ADNI)
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Arguments
ADNIS$Y: the Alzheimer’s disease status. Continuous variable. The raw status is binary
variable, and we adjusted it for confounding factors such as sex, age, education
.. etc.
ADNIS$X: The phenotype of interest AZ Continuous variable.
ADNIS$Z: The potential pleiotropic phenotypes (Ptau, Ttau, Glucose levels). Continuous
variables.
ADNISG: genotypes. The adjusted dosage of 20 SNPs.
Format

An object of class "data.frame”.

Examples

data(ADNI)
X <- ADNIS$X
Z <- ADNI$Z
G <- ADNIS$G
Y <- ADNIS$Y

allele cross-validated Allele score method.

Description
This function implement Allele score methods with cross-validation in the way Stephen Burgess
suggested in the Allele score methods paper.

Usage
allele(MR.data, n_folds = 10)

Arguments
MR.data: data frame containing G,X,Z,Y.
n_folds: the number of folds for cross-validation.
Value

weights: the weights for allele score across folds. Each row is a weight vector corresponding to a
specific fold.

allele_score: The cross-validated Allele score, which would be used as the new instruments in MR
analysis.

beta_est: the causal effect estimation of 3.
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Examples

data(simulation)
allele.score <- allele(simulation,n_folds=10)

boot_CIV bootstrapped CIV (recommended).

Description

This function generate a bootstrapped CIV w/wo correction. Specifically, for a bootstrap sample
we can generate civ solution u. The boostrap corrected solution u is obtained as the global solution
u - ( bootrapped average u - global u).

Usage

boot_CIV(MR.data, n_boots = 10)

Arguments
MR.data: a data frame containing G,X,Z,Y.
n_boots: number of bootstrap samples.
Value

boots.u: bootstrapped CIV solution u (without correction).

boots.cor.u: bootstrap corrected solution of u. (suggested)

Examples

data(simulation)

boot.civ <- boot_CIV(simulation)

#plot the bootstrap corrected solution u.
plot(boot.civ$boots.cor.u)

CIV Find a unique solution of CIV.

Description

This function find the unique CIV solution.

Usage
CIV(MR.data)
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Arguments

MR.data: A data.frame() object containg G,X,Z,Y.

Value

c: solution vector to the constrained maximization problem.
max_value: the maximized correlation value.

CIV: the new instrumentable variable for MR analysis: constrained instrumental variable.

Examples

data(simulation)

civ.fit <- CIV(simulation)
#plot the weight c
plot(civ.fit$c)

cv_CIV cross-validated CIV.

Description

This function produce a Constrained Instrumental Variable with cross-validation. Specifically, for
a predefined fold the CIV is calculated using all samples except this fold, then the CIV solution is
applied to the samples in this fold to obtain corresponding CIV. In this way the correlation between
samples are expected to be reduced.

Usage
cv_CIV(MR.data, n_folds = 10)

Arguments
MR.data: a data frame containing G,X,Z,Y.
n_folds: number of folds for cross-validation.
Value

weights: A matrix with dimension nolds * p. Each row is a CIV solution ¢ from a specific fold.
civ.IV: cross-validated CIV instrument G* = Ge.

beta_est: causal effect estimation of X on Y using CIV instrument civ.IV

Examples

data(simulation)

cv.civ <- cv_CIV(simulation)

#strong correlation between CIV solutions from different folds.
cor(t(cv.civ$weights))
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IV_reduction Instrumental variable reduction.

Description

This function remove highly correlated [Vs. An upgraded function SNP_reduction() is suggested.

Usage

IV_reduction(snp_matrix, crit_high_cor = 0.8)

Arguments

snp_matrix: IV matrix with dimension n * p.

crit_high_cor: criteria to choose highly correlated SNPs. default is 0.8 correlation.

Value

sel_snp: the selected IVs.

id_snp: the ids (columns) of selected I'Vs in the original IV matrix.

Examples

data(simulation)
snp.rdc <- IV_reduction(simulation$G)

LA_decomposition linear algebra decompositions for CIV. (internal function.)

Description

This function implements linear algebra steps to acquire necessary matrices for CIV construction.

Usage
LA_decomposition(G, X, Z)

Arguments

G: original instruments with dimension nXp.

X: phenotype of interest. dimension nXk.

Z: possible pleiotropic phenotypes which have been measured. dimension nXr.
Value

A list of matrices which will be called by solv_pcc() and pcc_IV().
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Examples

data(simulation)
LA_decomposition(simulation$G,simulation$X,simulation$z)

1mp simple linear regression pvalues (internal function.)

Description

univaraite t-test pvalues for a regression.

Usage
Imp(modelobject)

Arguments

modelobject: a regression object.

Value

p: pvalue.

ImPvalue univariate T-test p-values.

Description
Given response $Y$ and a set of features $X$, this function obtains univariate T-test p-values for
each of the feature for selection purpose.

Usage
ImPvalue(Y, X)

Arguments

Y: response variable. n x 1.

X: the independent features.n X p.
Value

pvalue_list: the list of Pvalues for feature selection based on univariate T-test.

Examples

data(simulation)
p.values <- 1mPvalue(simulation$X, simulation$G)
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pcc_IV multiple orthogonal CIV solutions. (internal function)

Description

This function find multiple CIV solutions that are orthogonal to each other. Only the first one achive
the global maximum correlation.

Usage
pcc_IV(A, B, G, inv_GG_square, no_IV = ncol(G) - ncol(B))

Arguments
A: matrix given by LA_decomposition().
B: matrix given by LA_decomposition().
G: original instruments.

Value

u_max: the solution of u that would maximize the constrained correlation problem.

Examples

data(simulation)

#CIV linear algebra decomposition components

civ.deco <- LA_decomposition(simulation$G,simulation$X,simulation$z)

#solve the CIV solution for c

civ.mult <- pcc_IV(civ.deco$A, civ.deco$B, simulation$G, civ.deco$inv_GG_square)

rm_outlier_IV select IVs from a smooth_IV object (experimental function).

Description

this function removes IVs with extreme low correlation and extreme high prediction error. This is
an experimental function to check how many redundant solutions are found in smooth.opt object.

Usage

rm_outlier_IV(smooth_IV, MR.data, crit = 0.9, sigma_min = 0.01)

Arguments
smooth_IV: an object from smooth_CIV() function.
MR.data: data frame containing G,X,Z,Y.

R default values for other tuning parameters.
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Value

IV_mat: the final matrix of CIV instruments.

u_mat: the final CIV solutions of u. Each column is a distinct solution.

Examples

data(simulation)

G <- simulation$G

X <- simulation$X

Z <- simulation$z

Y <- simulation$y

smooth.opt <- smooth_CIV( G,X,Z,Y, k_folds = 10)

smooth.clean <- rm_outlier_IV(smooth.opt, simulation)

dim(smooth.clean$u_mat) #check how many solutions are different. It is probability much less than 100.

simulation simulation Data.

Description

A simulated data using the same framework from simulation series I in the CIV paper. It contains
500 subjects with one phenotype (X) of interest, one pleiotropic phenotype (Z) and one outcome
(Y) simulated for each subject. 9 SNPs were generated and they were associated with both X and Z.
The true causal effect of X on Y is 1. This data file is simulated to serve as an example to estimate
the causal effect of X on Y while accounting for potential pleiotropic effect from Z. Users can
compare the performance of different MR methods on this simulation dataset since the true causal
effect is known.

Usage

data(simulation)

Arguments

simulation$yY: the simulated outcome Y. Continuous variable.
simulation$X: The simulated phenotype of interest X. Continuous variable.
simulation$Z: The potential pleiotropic phenotype Z. Continuous variable.

simulation$G: The simulated genotypes. The dosage of 9 independent SNP variants were sim-
ulated with a minor allele frequency of 0.3 for all 500 subjects.

Format

An object of class "data.frame”.
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Examples

data(simulation)

X <- simulation$X

Z <- simulation$Z

geno <- simulation$G
outcome <- simulation$Y

smooth_CIV CIV_smooth solution with cross-validation.(recommended)

Description

This function first find the optimal value of A according to projected prediction error with cross-
validation. Then for a given A\ value multiple intial points are used to explore potentially multiple
modes.

Usage

smooth_CIV(G, X, Z, Y, lambda_list = NULL, k_folds = 10, sigma_min = 0.01,
sigma_up = 0.5, stepsize = 0.1, conv_iters = 5, stepsize_last = 1e-04,
last_conv_iters = 2000, method_lambda = "er”, n_IV = 100)

Arguments

initial: the initial value for updating u.

G: SNP matrix with dimension n X p.

X: phenotype of interest.

Z: pleiotropic phenotype Z.

Y: the disease outcome Y.

lambda_list: a list of values for regularization parameter lambda. A default list will be chosen
if not provided.

k_folds: number of folds for cross-validation (to find optimum \). default = 10.

n_IV: the number of initial points chosen to explore potential multiple modes. The
converged solutions will be screened to delete redundant solutions. So the final
solutions will be less or equal to n_IV. default = 100.

sigma_min: the minimum value of o (corresponding to the closeast approximation of L
penalty). default = 0.01.

sigma_up: the moving down multiplier. o1 = sigma,p x o;. default =0.5.

stepsize: the stepsize to move solution u. default = 0.1.

conv_iters: the maximum steps to allow updating when a converged solution is found. de-

fault =5.

stepsize_last: When a converged solution is found with stepsize, we update this solution with
a smaller stepsize to achive a more precise local maximum solution. default =
0.0001.
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last_conv_iters:

the maximum iterations to run in the stage of “refining" optimum solution. de-
fault = 2000.

R default values for other tuning parameters.

Value

opt_lambda: the chosen optimum value of A\ corresponding to the minimum projected prediction
error (see paper).

IV_mat: the final matrix of CIV instruments with respect to the opt_lambda. Each column is a new
instrument.

u_mat: the final CIV solutions of u with respect to the opt_lambda. Each column is a converged
solution.

G_pred_error_list: the projected prediction error according to the list values of A.

Pred_error_list: the prediction error according to the list values of .

Examples

data(simulation)

G <- simulation$G

X <- simulation$X

Z <- simulation$zZ

Y <- simulation$Y

smooth.opt <- smooth_CIV( G,X,Z,Y, k_folds = 10)
plot(smooth.opt$u_mat[,1]) #plot a solution u.

smooth_L@_lambda CIV_smooth solution given ). (Internal function)

Description

This function finds a CIV_smooth solution of u given a value of A. This function is mostly for
internal use. smooth_CIV() is suggested for users to obtain optimal solutions of CIV_smooth.

Usage

smooth_L@_lambda(initial = NULL, null_space, G, X, GTG, lambda,
sigma_min = 0.01, sigma_up = 0.5, stepsize = 0.1, conv_iters =5,
stepsize_last = 1e-04, last_conv_iters = 2000, GTMG, ZTG, GTZ, ZTG_ginv,
accuracy_par = 1e-10)
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Arguments
initial: the initial point of u for updating. The CIV solution will be used as the initial
point if no choice is made.
G: SNP matrix with dimension n X p.
X: phenotype of interest.
Z: pleiotropic phenotype Z.
GTG: GG
GTMG: GX(X'X)'XG.
ZTG: Z‘G
GTZ: GZ
ZTG_ginv: general inverse of Z‘G (ginv(Z‘Q)).
null_space: null space of matrices GZ (null(G*Z)).
lambda: a given value (must be specified) for regularization parameter .

accuracy_par: the accuracy threshold parameter to determine if the algorithm converged to a
local maximum. Default is le-10.

last_conv_iters:
the maximum iterations to run. Default is 2000.

el default values for other tuning parameters.

Value

mat_u: the trace of all updated iterations of u.

opt_solution: the final solution of u.

value_list: the iteration values of target function (penalized correlation).
unstrained_val_list: the iteration values of correlation between X and Gu.
dev_list: the iteration values of deviance between updated vector of u.

n_iters_stage: the number of iterations before finishing updating. If this value < last_conv_iters,
then the algorithm stopped at a solution of u without using up its updating quota.

sigma_stage: the updating values of o that are used in each iteration.

stepsize_list: the updating values of stepsize that are used in each iteration.

Examples

data(simulation)

G <- simulation$G

X <- simulation$X

Z <- simulation$z

GTG <- crossprod(G,G)

M <- tcrossprod ( tcrossprod ( X , solve(crossprod(X,X) ) ), X )
GTMG <- crossprod(G, crossprod(M,G))

ZTG <- crossprod(Z,G)

GTZ <- crossprod(G,Z)

null_space <- Null( GTZ)
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ZTG_ginv <- ginv(ZTG)

lambda <- 1

smooth.lambdal <- smooth_L@_lambda(null_space = null_space, G=G, X =X, GIG = GTG, lambda = lambda,
GTMG = GTMG, ZTG = ZTG, GTZ = GTZ, ZTG_ginv = ZTG_ginv )

plot(smooth.lambdal$opt_solution) #plot the final solution u

SNP_reduction SNP pre-processing.

Description
This function remove highly correlated SNPs. It also calculate MAF for each snp and delete rare
snps with low MAF (e.g. 0.01).

Usage

SNP_reduction(snp_matrix, crit_high_cor = 0.8, maf_crit = 0.01)

Arguments

snp_matrix: SNP matrix with dimension n * p.
crit_high_cor: criteria to choose highly correlated SNPs.

maf_crit: criteria to choose rare SNPs.

Value

sel_snp: the new dosage matrix of selected SNPs.

id_snp: the ids (columns) of selected SNPs in the original SNP matrix.

Examples

data(simulation)
snp.rdc <- SNP_reduction(simulation$G)

solve_pcc Find a unique solution of CIV (internal use).

Description

This function find a unique solutin to the constrained instrument problem given matrix A and B.

Usage

solve_pcc(A, B)
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Arguments
A: matrix given by LA_decomposition().
B: matrix given by LA_decomposition().
Value

c: solution to the constrained maximization problem.

max_value: the maximized correlation value.

Examples

data(simulation)

#CIV linear algebra decomposition components

civ.deco <- LA_decomposition(simulation$G,simulation$X,simulation$z)
#solve the CIV solution \egn{u}

civ.c <- solve_pcc(civ.deco$A, civ.deco$B)

#plot the weight c

plot(civ.c$c)

TSLS_IV Two stage least square method.

Description

This function implement ordinary two stage least square regression and provide variance estimation
(if requested).

Usage
TSLS_IV(MR.data, Fstats = FALSE, var_cal = FALSE)

Arguments
MR.data: data frame containing G,X,Z,Y.
Fstats: return F-statistics or not. If multiple phenotypes (X) are used, Pillai statistics
will be used instead.
var_cal: return variance estimation or not.
Value

coef: the causal effect estimation f3.

var: the variance estimation of 3. if var_cal=TRUE.
stats: F-statistics (or Pillai statistics). if Fstats=TRUE.
pvalue: the pvalue of F-statistics. if Fstats=TRUE.
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Examples

data(simulation)
TSLS_IV(simulation,Fstats=TRUE,var_cal=TRUE)

15
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