Package: CheckSumStats (via r-universe)

October 1, 2024

Title CheckSumStats **Version** 0.0.0.9000

Description CheckSumStats is an R package for checking the accuracy of		
meta- and summary-data from genome-wide association studies		
(GWAS) prior to their use in post-GWAS applications. For		
example, the package provides tools for checking that the		
reported effect allele and effect allele frequency columns are		
correct. It also checks for possible issues in the reported		
effect sizes that might introduce bias into downstream		
analyses.		
License MIT + file LICENSE		
Encoding UTF-8		
LazyData true		
Roxygen list(markdown = TRUE)		
RoxygenNote 7.2.3		
Suggests testthat (>= 3.0.0)		
Config/testthat/edition 3		
Imports gwasrapidd, utils, stats, ggplot2, grid, gridExtra, cowplot,		
grDevices, ieugwasr, knitr, biomaRt, purrr, dplyr, tibble,		
magrittr, curl, plyr, ggpubr		
Remotes bioc::release/biomaRt, ramiromagno/gwasrapidd		
Depends R ($>= 3.5.0$)		
Repository https://mrcieu.r-universe.dev		
RemoteUrl https://github.com/MRCIEU/CheckSumStats		
RemoteRef HEAD		
RemoteSha ba670767d42a9f6041b65e4a155b64a3ac096434		
Contents		
ara_test_dat		

2

2 ara_test_dat

charge_top_hits		3
charge_top_hits_cleaned		4
combine_plots		4
compare_effect_to_gwascatalog		5
compare_effect_to_gwascatalog2		7
extract_sig_snps		
extract_snps		9
find_hits_in_gwas_catalog	. 1	lC
flag_af_conflicts	. 1	1
flag_gc_conflicts	. 1	1
flag_gc_conflicts2	. 1	12
format_data	. 1	13
get_efo	. 1	14
glioma_test_dat	. 1	15
gwas_catalog_hits	. 1	16
infer_ancestry	. 1	16
make_plot_gwas_catalog	. 1	17
make_plot_maf	. 1	19
make_plot_pred_effect	. 2	21
make_snplist	. 2	22
predict_beta_sd	. 2	23
predict_lnor_sh	. 2	24
refdat_1000G_superpops	. 2	24
transform_betas	. 2	25
zz_plot	. 2	26
	2	27

ara_test_dat

A example dataset of genetic summary data for arachidonic acid

Description

Index

The dataset contains summary association statistics for 436 SNPs, generated in linear regression models, from a genome-wide association study of arachidonic acid conducted by the CHARGE consortium. No post-GWAS filtering on allele frequency, imputation info score or number of studies has been performed. The selected SNPs correspond to three groups: 1) A MAF 1KG reference set, 2) GWAS catalog top hits for arachidonic acid and 3) GWAS top hits for arachidonic acid in the CHARGE study

Usage

ara_test_dat

charge_top_hits 3

Format

```
A data frame with 436 rows and 9 variables:
```

```
snp SNP rsid
effect_allele effect allele
other_allele non-effect allele
effect_allele_freq effect allele frequency
```

beta change in arachidonic acid per copy of the effect allele

se standard error for beta

p value statistic describing the association between the SNP and arachidonic acid

n number of study participants

path_to_target_file name of file used to generate example dataset

Source

http://www.chargeconsortium.com/main/results

charge_top_hits

GWAS top hits for arachidonic acid in the CHARGE consortium

Description

The dataset contains rsids for single nucleotide polymorphisms extracted from a genome-wide association study of arachidonic acid in the CHARGE consortium. The list was generated by 1) extracting all SNPs with P values <5e-8 (1063 SNPs in total); and then 2) performing LD clumping on the 1063 extracted SNPs (clump_r2 = 0.01, clump_kb=10000) using European participants from UK Biobank as a reference dataset. Clumping was performed using ieugwasr::ld_clump. No post-GWAS filtering on allele frequency, imputation info score or number of studies was performed on the GWAS summary statistics prior to the extraction of the SNPs.

Usage

```
charge_top_hits
```

Format

A charactor vector of length 210:

Source

http://www.chargeconsortium.com/main/results

4 combine_plots

```
charge_top_hits_cleaned
```

GWAS top hits for arachidonic acid in the CHARGE consortium after post-GWAS cleaning

Description

The dataset contains rsids for single nucleotide polymorphisms extracted from a genome-wide association study of arachidonic acid in the CHARGE consortium. Prior to extraction of the rsids, SNPs were excluded if they had a minor allele frequency <=5%, an imputation r2 score <=0.5 or were present in only 1 study (out of a total of 5 studies in the meta-analysis). This filtering steps are based on the post-GWAS filtering steps described in Guan et al (PMID=24823311). The list of rsids was then generated by: 1) extracting all SNPs with P values <5e-8 (219 SNPs in total); and then 2) performing LD clumping on the 219 extracted SNPs (clump_r2 = 0.01, clump_kb=10000) using European participants from UK Biobank as a reference dataset (6 SNPs remained after LD clumping). Clumping was performed using ieugwasr::ld_clump.

Usage

```
charge_top_hits_cleaned
```

Format

A charactor vector of length 6:

Source

http://www.chargeconsortium.com/main/results

combine_plots

Make cow plot

Description

Combine all plots into a single plot using the cowplot package

Usage

```
combine_plots(
  Plot_list = NULL,
  out_file = NULL,
  return_plot = FALSE,
  width = 800,
  height = 1000,
  Title = "",
```

```
Xlab = "",
Ylab = "",
Title_size = 0,
Title_axis_size = 0,
by2cols = TRUE,
Ncol = 2,
Tiff = FALSE
)
```

Arguments

Plot_list plots to combine. Can either be vector of character strings giving the names of

plot objects or a list of plot objects.

out_file filepath to save the plot

return_plot logical argument. If TRUE, plot is returned and is not save to out_file

width width of plot height height of plot Title plot title

Xlab label for X axis
Ylab label for Y axis
Title_size size of title

Title_axis_size

size of x axis title

by2cols logical argument. If true, forces plot to have 2 columns

Ncol number of columns

Tiff save plot in tiff format. Default is set to FALSE. If set to FALSE, the plot is

saved in png format. Not applicable if return_plot is set to TRUE.

Value

plot

compare_effect_to_gwascatalog

Compare the genetic effect sizes in the test dataset to the GWAS catalog

Description

Compare the direction of effects and effect allele frequency between the test dataset and the GWAS catalog, in order to identify effect allele meta data errors

Usage

```
compare_effect_to_gwascatalog(
  dat = NULL,
  efo = NULL,
  efo_id = NULL,
  trait = NULL,
  beta = NULL,
  se = NULL,
  gwas_catalog_ancestral_group = c("European", "East Asian"),
  exclude_palindromic_snps = TRUE,
  force_all_trait_study_hits = FALSE,
  distance_threshold = distance_threshold
)
```

Arguments

dat the test dataset of interest

efo trait of interest in the experimental factor ontology

efo_id ID for trait of interest in the experimental factor ontology

trait the trait of interest

beta name of the column containing the SNP effect size

se name of the column containing the standard error for the SNP effect size.

gwas_catalog_ancestral_group

restrict the comparison to these ancestral groups in the GWAS catalog. Default is set to (c("European", "East Asian")

exclude_palindromic_snps

should the function exclude palindromic SNPs? default set to TRUE. If set to FALSE, then conflicts with the GWAS catalog could reflect comparison of different reference strands.

force_all_trait_study_hits

force the comparison to include GWAS hits from the test dataset if they are not in the GWAS catalog? This should be set to TRUE only if dat is restricted to GWAS hits for the trait of interest. This is useful for visualising whether the test trait study has an unusually larger number of GWAS hits, which could, in turn, indicate analytical issues with the summary statistics

distance_threshold

distance threshold for deciding if the GWAS hit in the test dataset is present in the GWAS catalog. For example, a distance_threshold of 25000 means that the GWAS hit in the test dataset must be within 25000 base pairs of a GWAS catalog association, otherwise it is reported as missing from the GWAS catalog.

Value

dataframe

```
compare_effect_to_gwascatalog2
```

Compare the genetic effect sizes in the test dataset to the GWAS catalog

Description

Compare the direction of effects and effect allele frequency between the test dataset and the GWAS catalog, in order to identify effect allele meta data errors

Usage

```
compare_effect_to_gwascatalog2(
  dat = NULL,
  efo = NULL,
  efo_id = NULL,
  trait = NULL,
  gwas_catalog_ancestral_group = c("European", "East Asian"),
  exclude_palindromic_snps = TRUE,
  map_association_to_study = FALSE,
  beta = "beta",
  se = "se",
  gwas_catalog = NULL,
  force_all_trait_study_hits = FALSE,
  distance_threshold = distance_threshold
)
```

Arguments

dat the test dataset of interest

efo trait of interest in the experimental factor ontology

efo_id ID for trait of interest in the experimental factor ontology

trait the trait of interest
gwas_catalog_ancestral_group

restrict the comparison to these ancestral groups in the GWAS catalog. Default
is set to (c("European","East Asian")

exclude_palindromic_snps

should the function exclude palindromic SNPs? default set to TRUE. If set to FALSE, then conflicts with the GWAS catalog could reflect comparison of different reference strands.

map_association_to_study

map associations to study in GWAS catalog. This supports matching of results on PMID and study ancestry, which increases accuracy of comparisons, but is slow when there are large numbers of associations. Default = FALSE.

beta name of the column containing the SNP effect size

8 extract_sig_snps

se

name of the column containing the standard error for the SNP effect size.

gwas_catalog

user supplied data frame containing results from the GWAS catalog for the trait of interest. If set to NULL then the function will retrieve results from the GWAS catalog.

force_all_trait_study_hits

force the comparison to include GWAS hits from the test dataset if they are not in the GWAS catalog? This should be set to TRUE only if dat is restricted to GWAS hits for the trait of interest. This is useful for visualising whether the test trait study has an unusually larger number of GWAS hits, which could, in turn, indicate analytical issues with the summary statistics

distance_threshold

distance threshold for deciding if the GWAS hit in the test dataset is present in the GWAS catalog. For example, a distance_threshold of 25000 means that the GWAS hit in the test dataset must be within 25000 base pairs of a GWAS catalog association, otherwise it is reported as missing from the GWAS catalog.

Value

dataframe

extract_sig_snps

Extract SNPs with P value below a specified threshold (e.g. significant SNPs)

Description

Exract the rows of the summary dataset of interest with P values below the specified threshold. This only works on linux/mac operating systems.

Usage

```
extract_sig_snps(
  path_to_target_file = NULL,
  p_val_col_number = NULL,
  p_threshold = 5e-08
)
```

Arguments

```
path_to_target_file
```

path to the target file. This contains the summary data for the trait of interest

p_val_col_number

the column number corresponding to the P values for the SNP-trait associations

p_threshold

Extract SNP-trait associtions with P values less than this value. Default set to 5e-8

extract_snps 9

Value

data frame

Description

Exract the summary data for the rsids of interest from a target study. This only works on linux/ mac operating systems. Will not work on Windows.

Usage

```
extract_snps(
   snplist = NULL,
   path_to_target_file = NULL,
   exact_match = TRUE,
   path_to_target_file_sep = "\t",
   Test.gz = FALSE,
   fill = FALSE,
   Comment = "#",
   Head = TRUE,
   get_sig_snps = FALSE,
   p_val_col_number = NULL,
   p_threshold = 5e-08
)
```

Arguments

a list of rsids of interest, either a character vector or path_to_target_file with the snplist list of rsids path_to_target_file path to the target file This contains the summary data for the trait of #' interest search for exact matches. Default TRUE exact_match path_to_target_file_sep column/field separator. Default assumes that data is tab separated is the target data a gz file? Default set to FALSE Test.gz fill argument from read.table. logical. If 'TRUE' then in case the rows have unequal length, blank fields are implicitly added. Default is FALSE Comment comment to pass to comment.char in read.table. default = "#" Head Does the file have a header? Default set to TRUE get_sig_snps also extract the top hits from the target file, not just the SNPs specified in snplist. logic TRUE or FALSE. Default set to FALSE p_val_col_number the column number corresponding to the P values for the SNP-trait associations Extract SNP-trait associtions with P values less than this value. Default set to p_threshold

5e-8

Value

data frame

```
find_hits_in_gwas_catalog

Are hits in the GWAS catalog?
```

Description

Identify GWAS hits in the test dataset and see if they overlap with GWAS hits in the GWAS catalog.

Usage

```
find_hits_in_gwas_catalog(
  gwas_hits = NULL,
  trait = NULL,
  efo = NULL,
  efo_id = NULL,
  distance_threshold = 25000
)
```

Arguments

gwas_hits the "GWAS hits" in the test dataset (e.g. SNP-trait associations with P<5e-8)

trait the trait of interest

efo trait of interest in the experimental factor ontology

efo_id ID for trait of interest in the experimental factor ontology

distance_threshold

distance threshold for deciding if the GWAS hit in the test dataset is present in the GWAS catalog. For example, a distance_threshold of 25000 means that the GWAS hit in the test dataset must be within 25000 base pairs of a GWAS catalog association, otherwise it is reported as missing from the GWAS catalog.

Value

list

flag_af_conflicts 11

flag_af_conflicts

Flag allele frequency conflicts

Description

Flag allele frequency conflicts through comparison of reported allele frequency to minor allele frequency in the 1000 genomes super populations.

Usage

```
flag_af_conflicts(target_dat = NULL)
```

Arguments

target_dat

the dataset of interest. Data frame.

Value

list

flag_gc_conflicts

Flag conflicts with the GWAS catalog

Description

Flag conflicts with the GWAS catalog through comparison of reported effect alleles and reported effect allele frequency.

Usage

```
flag_gc_conflicts(
  dat = NULL,
  beta = "lnor",
  se = "lnor_se",
  efo = NULL,
  trait = NULL,
  efo_id = NULL,
  gwas_catalog_ancestral_group = c("European", "East Asian"),
  exclude_palindromic_snps = TRUE
)
```

12 flag_gc_conflicts2

Arguments

dat the test dataset of interest

beta name of the column containing the SNP effect size

se name of the column containing the standard error for the SNP effect size.

efo trait of interest in the experimental factor ontology

trait the trait of interest

efo_id ID for trait of interest in the experimental factor ontology

gwas_catalog_ancestral_group

restrict the comparison to these ancestral groups in the GWAS catalog. Default

is set to (c("European", "East Asian")

exclude_palindromic_snps

should the function exclude palindromic SNPs? default set to TRUE. If set to FALSE, then conflicts with the GWAS catalog could reflect comparison of

different reference strands.

Value

list

flag_gc_conflicts2

Flag conflicts with the GWAS catalog

Description

Flag conflicts with the GWAS catalog through comparison of reported effect alleles and reported effect allele frequency.

Usage

```
flag_gc_conflicts2(gc_dat = NULL)
```

Arguments

 $\begin{tabular}{ll} $\tt gc_dat & dataset generated by compare_effect_to_gwascatalog2() \\ \end{tabular}$

Value

list

format_data 13

format_data

format data

Description

Get the trait summary data ready for the QC checks.

Usage

```
format_data(
  dat = NULL,
  trait = NA,
  population = NA,
  ncase = NA,
  ncontrol = NA,
  rsid = NA,
  effect_allele = NA,
  other_allele = NA,
  beta = NA,
  se = NA,
  lnor = NA,
  lnor_se = NA,
  eaf = NA,
 p = NA,
 or = NA,
 or_lci = NA,
 or_uci = NA,
  chr = NA,
  pos = NA,
  z_score = NA,
  drop_duplicate_rsids = TRUE
)
```

Arguments

dat the dataset to be formatted the name of the trait. trait population describe the population ancestry of the dataset number of cases or name of the column specifying the number of cases ncase ncontrol number of controls or name of the column specifying the number of controls. If your summary data was generated in a linear model of a continuous trait, use ncontrol to indicate the total sample size. rsid name of the column containing the rs number or identifiers for the genetic varieffect_allele name of the effect allele column

14 get_efo

other_allele name of the non-effect allele column
beta name of the column containing the SNP effect

name of the column containing the SNP effect sizes. Use this argument if your

summary data was generated in a linear model of a continuous trait.

se standard error for the beta. Use this argument if your summary data was gener-

ated in a linear model of a continuous trait.

lnor name of the column containing the log odds ratio. If missing, tries to infer it

from the odds ratio

lnor_se name of the column containing the standard error for the log odds ratio. If

missing, tries to infer it from 95% confidence intervals or pvalues

eaf name of the effect allele frequency column

p name of the pvalue columne

or name of column containing the odds ratio

or_lci name of column containing the lower 95% confidence interval for the odds ratio or_uci name of column containing the upper 95% confidence interval for the odds ratio chr and of the column containing the chromosome number for each genetic variant

pos genomic position for the genetic variant in base pairs z_score effect size estimate divided by its standard error

drop_duplicate_rsids

drop duplicate rsids? logical. default TRUE. duplicate rsids may for example

correspond to triallelic SNPs.

Value

data frame

get_efo get efo

Description

Retrieve the experimental factor ontology (EFO) for some trait of interest. EFOs are retrieved from ZOOMA https://www.ebi.ac.uk/spot/zooma/

Usage

```
get_efo(trait = NULL)
```

Arguments

trait the trait of interest

Value

list

glioma_test_dat 15

glioma_test_dat

A example dataset of genetic summary data

Description

The dataset contains summary association statistics for 98 SNPs, generated in logistic regression models, from a genome-wide association study of glioma conducted by the GliomaScan consortium.

Usage

```
glioma_test_dat
```

Format

A data frame with 98 rows and 20 variables:

Locus SNP rsid

Allele1 non-effect allele

Allele2 effect allele

MAF SNP minor allele frequency in controls|cases

Geno_Counts genotype counts in controls/cases

Subjects Number of participants in study

p value statistic describing the association between the SNP and glioma

OR odds ratio for glioma

OR_95._CI_l lower 95% confidence interval

OR_95._CI_u upper 95% confidence interval

CHROMOSOME chromosome number

LOCATION genomic coordinates in base pairs

controls number of controls

cases number of cases

eaf.controls effect allele frequency in controls

Source

```
https://pubmed.ncbi.nlm.nih.gov/22886559/
```

infer_ancestry

gwas_catalog_hits C

GWAS top hits

Description

Extract results for top hits for the trait of interest from the NHGRI-EBI GWAS catalog

Usage

```
gwas_catalog_hits(
  trait = NULL,
  efo = NULL,
  efo_id = NULL,
  map_association_to_study = FALSE
)
```

Arguments

trait the trait of interest as reported in the GWAS catalog

efo trait of interest in the experimental factor ontology

efo_id ID for trait of interest in the experimental factor ontology

map_association_to_study

map associations to study in GWAS catalog. This supports matching of results on PMID and study ancestry, which increases accuracy of comparisons, but is slow when there are large numbers of associations. It is recommended that you run this function with map_association_to_study set to FALSE. Then, if large numbers of conflicting effect sizes are identified, re-run with this argument set to TRUE. Default = FALSE.

Value

data frame

infer_ancestry

Infer ancestry

Description

Infer possible ancestry through comparison of allele frequency amongst test dataset and 1000 genomes super populations. Returns list of Pearson correlation coefficients.

Usage

```
infer_ancestry(target_dat = NULL)
```

Arguments

```
target_dat the dataset of interest. Data frame.
```

Value

list

```
make_plot_gwas_catalog
```

Plot comparing the test study to the GWAS catalog

Description

Make a plot comparing signed Z scores, or effect allele frequency, between the test dataset and the GWAS catalog, in order to identify effect allele meta data errors

Usage

```
make_plot_gwas_catalog(
  dat = NULL,
  plot_type = "plot_zscores",
  efo_id = NULL,
  efo = NULL,
  trait = NULL,
  gwas_catalog_ancestral_group = c("European", "East Asian"),
  legend = TRUE,
  Title = "Comparison of Z scores between test dataset & GWAS catalog",
  Ylab = "Z score in test dataset",
  Xlab = "Z score in GWAS catalog",
  force_all_trait_study_hits = FALSE,
  exclude_palindromic_snps = TRUE,
  beta = "beta",
  se = "se",
  distance_threshold = 25000,
  return_dat = FALSE,
  map_association_to_study = FALSE,
  gwas_catalog = NULL,
  nocolour = FALSE,
  publication_quality = FALSE,
  gc_dat = NULL
)
```

Arguments

dat the test dataset of interest

plot_type compare Z scores or effect allele frequency? For comparison of Z scores set

plot_type to "plot_zscores". For comparison of effect allele frequency set to

"plot_eaf". Default is set to "plot_zscores"

efo_id ID for trait of interest in the experimental factor ontology

efo trait of interest in the experimental factor ontology

trait the trait of interest gwas_catalog_ancestral_group

restrict the comparison to these ancestral groups in the GWAS catalog. Default

is set to (c("European", "East Asian")

legend include legend in plot. Default TRUE

Title plot title
Ylab label for Y axis
Xlab label for X axis
force_all_trait_study_hits

force the plot to include GWAS hits from the outcome study if they are not in the GWAS catalog? This should be set to TRUE only if dat is restricted to GWAS hits for the trait of interest. This is useful for visualising whether the outcome/trait study has an unusually larger number of GWAS hits, which could, in turn, indicate that the summary statistics have not been adequately cleaned.

exclude_palindromic_snps

should the function exclude palindromic SNPs? default set to TRUE. If set to FALSE, then conflicts with the GWAS catalog could reflect comparison of different reference strands.

beta name of the column containing the SNP effect size

se name of the column containing the standard error for the SNP effect size.

distance_threshold

distance threshold for deciding if the GWAS hit in the test dataset is present in the GWAS catalog. For example, a distance_threshold of 25000 means that the GWAS hit in the test dataset must be within 25000 base pairs of a GWAS catalog association, otherwise it is reported as missing from the GWAS catalog.

return_dat if TRUE, the dataset used to generate the plot is returned to the user and no plot is made.

map_association_to_study

map associations to study in GWAS catalog. This supports matching of results on PMID and study ancestry, which increases accuracy of comparisons, but is slow when there are large numbers of associations. Default = FALSE

gwas_catalog user supplied data frame containing results from the GWAS catalog for the trait

of interest. If set to NULL then the function will retrieve results from the GWAS

catalog.

nocolour if TRUE, effect size conflicts are illustrated using shapes rather than colours.

Default FALSE

publication_quality

produce a high resolution image e.g. for publication purposes. Default FALSE

gc_dat output of compare_effect_to_gwascatalog2. This will typically be ignored by

most users. Default NULL

make_plot_maf

Value

plot

make_plot_maf MAF plot

Description

Make a plot comparing minor allele frequency between test dataset and reference studies.

Usage

```
make_plot_maf(
  ref_dat = NULL,
  ref_1000G = c("AFR", "AMR", "EAS", "EUR", "SAS", "ALL"),
  target_dat = NULL,
  eaf = "eaf",
  snp_target = "rsid",
  snp_reference = "SNP",
  ref_dat_maf = "MAF",
  target_dat_effect_allele = "effect_allele",
  target_dat_other_allele = "other_allele",
  ref_dat_minor_allele = "minor_allele",
  ref_dat_major_allele = "major_allele",
  trait = "trait",
  target_dat_population = "population",
  ref_dat_population = "population",
  target_study = "study",
  ref_study = "study",
 Title = "Comparison of allele frequency between test dataset & reference study",
  Ylab = "Allele frequency in test dataset",
  Xlab = "MAF in reference study",
 cowplot_title = "Allele frequency in test dataset vs 1000 genomes super populations",
  return_dat = FALSE,
  nocolour = FALSE,
  legend = TRUE,
  allele_frequency_conflict = 1,
  publication_quality = FALSE
)
```

Arguments

ref_dat user supplied reference dataset. data frame. optional
ref_1000G if ref_dat is NULL, the user should indicate the 1000 genomes reference study
of interest. options are: AFR, AMR, EAS, EUR, SAS or ALL. Default is to
make plots for all super populations

20 make_plot_maf

target_dat the test dataset of interest. Data frame.

eaf name of the effect allele frequency column in target_dat

snp_target rsid column in target_dat snp_reference rsid column in ref_dat

ref_dat_maf name of the minor allele frequency column in the reference dataset. Only nec-

essary if ref_dat is specified

target_dat_effect_allele

name of the effect allele column in target_dat

target_dat_other_allele

name of the non-effect allele column in target dat

ref_dat_minor_allele

name of the minor allele column in the reference dataset. Only necessary if

ref_dat is specified

ref_dat_major_allele

name of the major allele column in the reference dataset. Only necessary if

ref_dat is specified

trait name of the trait corresponding to target_dat

target_dat_population

population ancestry of target_dat

ref_dat_population

name of column describing population ancestry of reference dataset. Only nec-

essary if ref_dat is specified

target_study column in target_dat indicating name of target study

ref_study column in reference study indicating name of reference study. Only necessary

if ref_dat is specified

Title plot title
Ylab Y label
Xlab X label

cowplot_title title of overall plot

return_dat if TRUE, the dataset used to generate the plot is returned to the user and no plot

is made.

nocolour if TRUE, allele frequency conflicts are illustrated using shapes rather than colours.

legend include legend in plot. Default TRUE

allele_frequency_conflict

how to define allele frequency conflicts. 1= flag SNPs in the test dataset whose reported minor allele has frequency >0.5. 2= additionally flag SNPs with allele frequency differening by more than 10 points from allele frequency in the

reference dataset. Default = 1

publication_quality

produce a very high resolution image e.g. for publication purposes. Default

FALSE

Value

plot

make_plot_pred_effect Predicted versus reported effect sizes

Description

Make a plot comparing the predicted effect sizes to the reported effect sizes.

Usage

```
make_plot_pred_effect(
  dat = NULL,
  Xlab = "Reported effect size",
  Ylab = "Expected effect size",
  subtitle = "",
  maf_filter = FALSE,
  bias = FALSE,
  Title = "Expected versus reported effect size",
  legend = TRUE,
  standard_errors = FALSE,
  pred_beta = "lnor_pred",
  pred_beta_se = "lnor_se_pred",
  beta = "lnor",
  se = "lnor_se"
  sd_est = "sd_est",
  exclude_1000G_MAF_refdat = TRUE,
  nocolour = FALSE,
  publication_quality = FALSE
)
```

Arguments

dat the target dataset of interest

Xlab label for X axis Ylab label for Y axis

subtitle subtitle

maf_filter minor allele frequency threshold. If not NULL, genetic variants with a minor

allele frequency below this threshold are excluded

bias logical argument. If TRUE, plots the % deviation of the expected from the

reported effect size on the Y axis against the reported effect size on the X axis.

Title plot title

legend logical argument. If true, includes figure legend in plot

standard_errors

logical argument. If TRUE, plots the expected versus the reported standard er-

rors for the effect sizes

22 make_snplist

pred_beta name of column containing the predicted effect size

pred_beta_se name of column containing the standard error for the predicted effect size

beta name of column containing the reported effect size

se name of column containing the standard error for the reported effect size

sd_est the standard deviation of the phenotypic mean. Can either be a numeric vector

of length 1 or name of the column in dat containing the standard deviation value (in which case should be constant across SNPs). Only applicable for continuous traits. If not supplied by the user, the standard deviation is approximated using sd_est, estimated by the predict_beta_sd() function. The sd_est is then used to standardise the reported effect size. If the reported effect size is already

standardised (ie is in SD units) then sd_est should be set to NULL

exclude_1000G_MAF_refdat

exclude rsids from the 1000 genome MAF reference dataset.

nocolour if TRUE, effect size conflicts are illustrated using shapes rather than colours.

Default FALSE

publication_quality

produce a very high resolution image e.g. for publication purposes. Default

FALSE

Value

plot

make_snplist

make a SNP list

Description

Create a list of rsids corresponding to "top hits" in the GWAS catalog, the 1000 genomes super populations and SNPs of specific interest to the user (e.g. genetic instruments/proxies for the exposure of interest).

Usage

```
make_snplist(
  trait = NULL,
  efo_id = NULL,
  efo = NULL,
  ref1000G_superpops = TRUE,
  snplist_user = NULL
)
```

predict_beta_sd 23

Arguments

Value

character vector

Examples

```
snplist<-make_snplist(efo_id="EFO_0006859",ref1000G_superpops=FALSE)</pre>
```

predict_beta_sd

Predicted standardised beta

Description

Predict the standardised beta using sample sise, Z score and minor allele frequency. Returns the predicted standardised beta, proportion of phenotypic variance explained by the SNP (r2) and F statistic for each SNP

Usage

```
predict_beta_sd(
  dat = NULL,
  beta = "beta",
  se = "se",
  eaf = "eaf",
  sample_size = "ncontrol",
  pval = "p"
)
```

Arguments

dat	the outcome dataset of interest
beta	the effect size column
se	the standard error column
eaf	the effect allele frequency column
sample_size	the sample size column
pval	name of the p value column

Value

data frame with predicted standardised beta, r2 and F stat statistics and estimated standard deviation

predict_lnor_sh

Predicted log odds ratio

Description

Predict the log odds ratio, using the Harrison approach. https://seanharrisonblog.com/2020/. The log odds ratio is inferred from the reported number of cases and controls, Z scores and minor allele frequency

Usage

```
predict_lnor_sh(dat = NULL)
```

Arguments

dat

the outcome dataset of interest

Value

data frame

refdat_1000G_superpops

A dataset of reference allele frequencies from 1000 genomes superpopulations

Description

The dataset contains minor allele frequency for 2297 SNPs that have minor allele frequency 0.1-0.3 across each superpopulation in the 1000 genomes project.

Usage

```
refdat_1000G_superpops
```

transform_betas 25

Format

A data frame with 13782 rows and 8 variables:

CHR chromosome number

SNP SNP rsid

minor_allele SNP minor allelemajor_allele SNP major alleleMAF SNP minor allele frequency

NCHROBS number of observed chromosomes

population 1000 genomes superpopulation: AFR=African; ALL=all individuals; AMR = Ad Mixed American; EAS=East Asian; EUR=European; SAS=South Asian

Source

https://www.internationalgenome.org/home

Description

Transform betas from a linear model to a log odds ratio scale. Assumes betas have been derived from a linear model of case-control status regressed on SNP genotype (additively coded).

Usage

```
transform_betas(dat = NULL, effect = "lnor", effect.se = "se")
```

Arguments

dat the target dataset rsids

effect the column containing the beta. We wish to transform this to a log odds ratio

scale

effect.se standard error for the beta

Value

data frame

26 zz_plot

zz_plot ZZ plot

Description

Calculate Z scores from the reported P values (Zp) and the reported log odds ratios (Zlnor). Construct a scatter plot of Zp and Zlnor

Usage

```
zz_plot(
  dat = NULL,
  Title = "ZZ plot",
  Ylab = "Z score inferred from p value",
  Xlab = "Z score inferred from effect size and standard error",
  beta = "lnor",
  se = "lnor_se",
  exclude_1000G_MAF_refdat = TRUE,
  publication_quality = FALSE
)
```

Arguments

Value

plot

FALSE

Index

```
* datasets
    ara_test_dat, 2
    charge_top_hits, 3
    charge_top_hits_cleaned, 4
    glioma_test_dat, 15
    refdat_1000G_superpops, 24
ara_test_dat, 2
charge_top_hits, 3
charge_top_hits_cleaned, 4
combine_plots, 4
compare_effect_to_gwascatalog, 5
compare_effect_to_gwascatalog2, 7
extract_sig_snps, 8
extract_snps, 9
find_hits_in_gwas_catalog, 10
flag_af_conflicts, 11
flag_gc_conflicts, 11
flag\_gc\_conflicts2, 12
format_data, 13
get_efo, 14
glioma_test_dat, 15
gwas_catalog_hits, 16
infer_ancestry, 16
make_plot_gwas_catalog, 17
make_plot_maf, 19
make_plot_pred_effect, 21
make_snplist, 22
predict_beta_sd, 23
predict_lnor_sh, 24
refdat_1000G_superpops, 24
transform_betas, 25
zz_plot, 26
```