Package 'MRMiSTERI'

Title: Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation
Description: This package performs robust Mendelian randomization to estimate the effect of treatment on the treated with possibly invalid IVs.
Authors: Zhonghua Liu, Ting Ye, Baoluo Sun and Eric Tchetgen Tchetgen
Maintainer: Zhonghua Liu <[email protected]>
License: MIT
Version: 0.1.0
Built: 2024-12-30 05:35:19 UTC
Source: https://github.com/remlapmot/MRMiSTERI

Help Index


MR MiSTERI for a continous outcome with Gaussian errors.

Description

This function estimates the causal effect of treatment on the treated (ETT) for a continous outcome with Gaussian error terms.

Usage

misterigauss(Z = Z, A = A, Y = Y)

Arguments

Z

an IV scalar variable

A

the exposure variable

Y

the continuous outcome variable

Value

a list object that contains causal effect estimates and standard errors.

References

https://www.medrxiv.org/content/10.1101/2020.09.29.20204420v3


MR MiSTERI for a continous outcome with Gaussian mixture errors.

Description

This function estimates the causal effect of treatment on the treated (ETT) for a continous outcome with error terms that follow Gaussian mixture distributions.

Usage

misterigaussmix(Z, A, Y, maxiter = 100, tol = 0.001)

Arguments

Z

an IV scalar variable

A

the exposure variable

Y

the continuous outcome variable

Value

a list object that contains causal effect estimates and standard errors.

References

https://www.medrxiv.org/content/10.1101/2020.09.29.20204420v3 #' @import alabama


MR MiSTERI with many weak invalid IVs

Description

misterimawii combines many weak invalid IVs to reduce weak IV bias.

Usage

misterimawii(Z, A, Y)

Arguments

Z

an IV matrix with columns representing IVs

A

the exposure variable

Y

the continuous outcome variable

Value

a list object that contains causal effect estimates and standard errors.

References

https://www.medrxiv.org/content/10.1101/2020.09.29.20204420v3