
Package: RFQT (via r-universe)
September 26, 2024

Type Package
Title Random Forest of Q Trees
Version 0.1.0
Author Haodong Tian
Maintainer Haodong Tian <haodong.tian@mrc-bsu.cam.ac.uk>
Description Data-adaptive method for effect heterogeneity analysis or

non-linear causal studies in Mendelian randomization and
instrumental variables analysis.

License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports stats, MendelianRandomization, tidyverse, data.table, parallel
Suggests dplyr
Repository https://mrcieu.r-universe.dev
RemoteUrl https://github.com/HDTian/RFQT
RemoteRef HEAD
RemoteSha 1edae49a2fcba3d1f64db12c1149947d1805469a

Contents
BootstrapTreeFitting . 2
DTfit . 5
getDat . 8
GetIndex . 9
getMSE . 11
GetNindex . 12
getPars . 13
getPredict . 15
GetTree . 16
getVI . 18
RFQTfit . 19

Index 23

1

2 BootstrapTreeFitting

BootstrapTreeFitting One Bootstrap Q Tree Fitting

Description

BootstrapTreeFitting fits the Q-tree for a bootstrap data of the training set (with user-
specific seed) and store the cleaned results. If you do not need results but the original
(dirty) Q-tree information, you may use GetTree().

Usage

BootstrapTreeFitting(seed=1,
Odat=odat,
Vdat=vdat,
honest=FALSE,
S=5,
rate=0.4,
SingleM=FALSE,
Qthreshold=3.84,
method='DR',
SoP=10,
howGX='SpecificGX',
Halve=FALSE,
endsize=1000,
const=NA)

Arguments

seed seed value for reproducible and traceable results
Odat a data frame. This is recognized as the trainging data set.
Vdat a data frame. This is recognized as the testing or validation data set.
honest Logical value indicates whether to use the honest estimation style or not.

Default value is FALSE. When honest estimation is used, the tree con-
struction and the leaf-specific estimates will be obtained in two seperate
samples of the (boostrapped) training data.

S a postive integer indicates the maximum tree depth allowed. Default value
is 5 (i.e. the data set is allowed to be splitted at most 5 times). S is also
conneted to the argument endsize, both of which work in a similar way.
One may only restrict one of them and leave another one be a flexible
value (e.g. S=100 or endsize=0).

rate a value ranging from 0 to 1 indicates the proportion of the candidate
covariates to be randomly cosidered in each split when construcing the
Q-tree.

SingleM Logical value indicates whether to use one single covariate variable at all
times. Default value is FALSE. If SingleM=TRUE, the covariate used are
the best variable indicated by GetIndex.

BootstrapTreeFitting 3

Qthreshold A positive value used as the threshold value for the Q statistic. Default
value is 3.0. One can set Qthreshold=0 to ignore the Q-related stopping
rule.

method a character indicates the stratification method used for constructing a
Q-tree. There are currently three methods: the Doubly-ranked method
(method='DR'), the residual methods (method='Residual') and the naive
method (recognized by any character except 'DR' and 'Residual'). The
default method is 'DR'.

SoP a postive integer (>=2) indicates the size of pre-straum. Only applicable
for the doubly-ranked stratification. Default value is 10.

howGX a character indicates the way to calculate the instrument-exposure asso-
ciations. Two ways are currenly allowed: the instrument-exposure asso-
ciations estimated seperately at each stratum (howGX='SpecificGX'), or
use a fixed instrument-exposure association (howGX='const')

Halve Logical. Indictes whether to split the node by half:half (i.e. 5:5). Default
value is FALSE.

endsize a positive integer value indicates the minimual size of the node of Q-tree.
S and endsize work in a similar way.

const a value indicates the fixed instrument-exposure association value used for
constructing the Q-tree. Only applicable for howGX='SpecificGX'.

Details

The training data Odat and the testing data Vdat should be of the same form and be a data
frame that can be regonized by the functions. The first four columns must be the individual
IDs, the (one-dimensional) instrument, the exposure (should be NA if not available), and the
outcome, respectively. The (high-dimensional) covariates are then follwing. Note that all
the functions may be working with incorrect column ordering, but the results are misleading.
Do make sure the column variable order is correct.
If simulated data is used, there should be a end column named as true_STE. That is,
odat$true_STE is not NULL.
If the data does not contain the exposure information, the RFQT can still be fitted, where
one should use howGX='const' with a external instrument-exposure association (usually
from independent studies).

Value

BootstrapTreeFitting returns a list with the following components:

end_node_information
the end nodes (leaves) information of the fitted Q tree, which contains
the end-node index, the MR estimates, and the sample size proportion.

OOB_predict the predicted effects of the OOB samples accrding to the Q-tree. Values
will be 0 if the individual is not out of bag.

v_predict the predicted effects of the testing samples accrding to the Q-tree.

4 BootstrapTreeFitting

vi1 the vector of the variable importance (VI) measurements for all the can-
didate covariates considered.

vi2 the vector of the variable importance (VI) measurements for all the can-
didate covariates considered. This VI measurements do not need the
individual true effect information, therefore suitable for real application
data.

ts1 the value of the permutation test with statistic S1.
ts2 the value of the permutation test with statistic S2.

When the real data is fitted, vi1 is not applicable. When only traning data is available,
v_predict is not applicable.

References

Burgess, S., Davies, N. M., & Thompson, S. G. (2014). ”Instrumental variable analysis with
a nonlinear exposure–outcome relationship”. Epidemiology (Cambridge, Mass.), 25(6), 877.
(Residual stratification)
Tian, H., Mason, A. M., Liu, C., & Burgess, S. (2023). ”Relaxing parametric assump-
tions for non-linear Mendelian randomization using a doubly-ranked stratification method”.
PLOS Genetics, 19(6), e1010823. (Doubly-ranked stratification)

Examples

library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

#When running RFQT with mutiple Q trees/bootstrap - use parallel computation
Nb<-5 #how many trees in the forest? e.g. 5 trees
cl<-makeCluster(2)#�������clusters/��
clusterEvalQ(cl=cl , expr=library(dplyr))
clusterEvalQ(cl=cl , expr=library(MendelianRandomization))
clusterExport(cl=cl , varlist=c('odat', 'vdat',

'GetTree', 'GetNindex', 'GetIndex'))#or any other arguments
RES<-parSapply(cl , 1:Nb, BootstrapTreeFitting)
stopCluster(cl)
dim(RES)#7 Nb
##If you wish to use your own parameters rather than the default parameters, try:
#general exmaple
user_BootstrapTreeFitting<-function(seed){

RES<-BootstrapTreeFitting(seed,
honest=my.honest,
S=my.S,

DTfit 5

JJ=my.JJ, #or any partial of the arguments
rate=my.rate,
Qthreshold=my.Qthreshold,
method=my.method,
SoP=my.SoP,
howGX=my.howGX,
endsize=my.endsize)

return(RES)
}
#specific exmaple
user_BootstrapTreeFitting<-function(seed){

RES<-BootstrapTreeFitting(seed,SoP=20)
return(RES)

}
###parallel computation -> RFQT
Nb<-5 #how many trees in the forest?
cl<-makeCluster(2)
clusterEvalQ(cl=cl , expr=library(dplyr))
clusterEvalQ(cl=cl , expr=library(MendelianRandomization))
clusterExport(cl=cl , varlist=c('odat', 'vdat',

'GetTree', 'GetNindex', 'GetIndex' , 'BootstrapTreeFitting'))
RES<-parSapply(cl , 1:Nb, user_BootstrapTreeFitting)
stopCluster(cl)

DTfit Fit a Classical Single Decision Tree (DT)

Description

DTfit fits a data set (the training data) by the classical Q tree, and return the summary
results. DTfit works similarly as GetTree and BootstrapTreeFitting, but not designed
or used for future random forest fitting. If you wish to fit data via single tree rather than
random forest, use DTfit.

Usage

DTfit(Odat = odat,
Vdat = NA,
honest = FALSE,
S = 5,
rate =1,
SingleM = FALSE,
Qthreshold = 3.84,
method = "DR",
SoP = 10,
howGX = "SpecificGX",
Halve = FALSE,
endsize = 1000,
const = NA)

6 DTfit

Arguments

Odat a data frame. This is recognized as the trainging data set.
Vdat a data frame. This is recognized as the testing or validation data set. The

default value is NA, indicating that no testing data will be considered.
honest logical value indicates whether to use the honest estimation style or not.

Default value is FALSE. When honest estimation is used, the tree con-
struction and the leaf-specific estimates will be obtained in two seperate
samples of the (boostrapped) training data.

S a postive integer indicates the maximum tree depth allowed. Default value
is 5 (i.e. the data set is allowed to be splitted at most 5 times). S is also
conneted to the argument endsize, both of which work in a similar way.
One may only restrict one of them and leave another one be a flexible
value (e.g. S=100 or endsize=0).

rate a value ranging from 0 to 1 indicates the proportion of the candidate
covariates to be randomly cosidered in each split when construcing the
Q-tree.

SingleM logical value indicates whether to use one single covariate variable at all
times. Default value is FALSE. If SingleM=TRUE, the covariate used are
the best variable indicated by GetIndex.

Qthreshold a positive value used as the threshold value for the Q statistic. Default
value is 3.84. One can set Qthreshold=0 to ignore the Q-related stopping
rule.

method a character indicates the stratification method used for constructing a
Q-tree. There are currently three methods: the Doubly-ranked method
(method='DR'), the residual methods (method='Residual') and the naive
method (recognized by any character except 'DR' and 'Residual'). The
default method is 'DR'.

SoP a postive integer (>=2) indicates the size of pre-straum. Only applicable
for the doubly-ranked stratification. Default value is 10.

howGX a character indicates the way to calculate the instrument-exposure asso-
ciations. Two ways are currenly allowed: the instrument-exposure asso-
ciations estimated seperately at each stratum (howGX='SpecificGX'), or
use a fixed instrument-exposure association (howGX='const').

Halve logical. Indictes whether to split the node by half:half (i.e. 5:5). Default
value is FALSE.

endsize a positive integer value indicates the minimual size of the node of Q-tree.
S and endsize work in a similar way.

const a value indicates the fixed instrument-exposure association value used for
constructing the Q-tree. Only applicable for howGX='SpecificGX'.

Details

Like RFQTfit, DTfit is an integrated function combining other functions, including getPredict
and getVI.

DTfit 7

The training data Odat and the testing data Vdat should be of the same form and be a data
frame that can be regonized by the functions. The first four columns must be the individual
IDs, the (one-dimensional) instrument, the exposure (should be NA if not available), and the
outcome, respectively. The (high-dimensional) covariates are then follwing. Note that all
the functions may be working with incorrect column ordering, but the results are misleading.
DO make sure the column variable order is correct.

Value

DTfit returns a list consisting of the following components:
end_node_information

the end nodes (leaves) information of the fitted Q tree, which contains
the end-node index, the MR estimates, and the sample size proportion.

v_predicted the predicted effects of the testing samples accrding to the Q-tree.
ts1 the value of the permutation test with statistic S1.
ts2 the value of the permutation test with statistic S2.
MSE the MSE results for the testing samples (if both of the testing set and the

label exist).
rdat the tree fitted data.

References

Burgess, S., Davies, N. M., & Thompson, S. G. (2014). ”Instrumental variable analysis with
a nonlinear exposure–outcome relationship”. Epidemiology (Cambridge, Mass.), 25(6), 877.
(Residual stratification)
Tian, H., Mason, A. M., Liu, C., & Burgess, S. (2023). ”Relaxing parametric assump-
tions for non-linear Mendelian randomization using a doubly-ranked stratification method”.
PLOS Genetics, 19(6), e1010823. (Doubly-ranked stratification)

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the default setting: scenario='A' and SoM=0.5
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

DTRES<-DTfit(odat,vdat)

DTRES

#get (testing set) MSE manually
mean((DTRES$v_predict - vdat$true_STE)^2)

8 getDat

getDat Creat a Simulated Data

Description

getDat creats a toy data based on a certain model

Usage

getDat(N = 150000,
Nt = 100000,
Nc = 20,
scenario='A',
SoM = 0.5,
ZXeffect = 0.5,
Random = TRUE,
label = TRUE,
split = TRUE)

Arguments

N a integer indicates the total sample size (training data size + testing data
size)

Nt a integer indicates the size of the training data.
Nc a integer indicates the number of candidate variables.
scenario a character indicates the model scenarios data will be simulated from.

'A' refers to scenario where no colliders. 'B' refers to the scenario that
half covariates will be colliders. 'C' refers to more complicated collider
scenarios.

SoM a value indicates the strength of modification (i.e. how strong will the
covariate modify the treatment effect). Note even if SoM=0, there still
exists weak modification.

ZXeffect a value indicates the instrument-exposure effect.
Random logical. Indicates whether to use the random value for strenght modifica-

tion. Default value is TRUE, where weak modification always exists even
if SoM=0 due to randomness.

label logical. Indicates whether to added the final column of the simulated data
as the true heterogenerous effect (i.e. label). Default value is TRUE.

split logical. If FALSE, only one data set is returened. The default is TRUE, the
data will be splitted into the training data and testing data.

Details

The data-generating model is the same as the Scenarios in the original paper, where the
first 5 covariates are the true effect modifiers. The covariates in even positions (2,4,...) are
the common downstream variables of the exposure and te confounders, therefore causing
collider bias (when conditioning on these variables).

GetIndex 9

Value

getDat() returns a list with three kings of toy data set

whole.data the complete whole dataset
traning.set the training set
testing.set the testing set
SoM Strength of Modification
modifier_vec the modification strength vector for each covariate
Scenario scenario information

the training set and the testing set are of the same form that can be regonized by all the
functions. The first four columns are the individual IDs, the instrument, the exposure,
and the outcome, respectively. The high-dimensional (dimensions = Nc) covariates are
then follwing. The end column is true_STE, representing the individal controlled direct
treatment effect (see more details in the original paper).

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

GetIndex Get the Best Covariate Index

Description

GetIndex gives the best covariate index according to the inputed data set. The best co-
variate is one out of the candidate covariates considered that gives the largest Q statistic
value.

Usage

GetIndex(dat_current,
JJ,
rate = 1,
SpecificM = NA,
method = "DR",
SoP = 10,
howGX = "SpecificGX",
Halve = FALSE,
const = NA)

10 GetIndex

Arguments

dat_current A data frame. This data frame has the first four columns: individual
IDs, the instrument, the expoure, and the outcome with the candidate
covariates following.

JJ A positive integer indicates the total number of the candiate covariates.
rate a value ranging from 0 to 1 indicates the proportion of the candidate

covariates to be randomly cosidered in each split when construcing the
Q-tree.

SpecificM a vector indicates the index of candidate variables that can be considered
in spliiting. Tbe default value is NA, which means all candidate variables
are possible to be considered.

method a character indicates the stratification method used for constructing a
Q-tree. There are currently three methods: the Doubly-ranked method
(method='DR'), the residual methods (method='Residual') and the naive
method (recognized by any character except 'DR' and 'Residual'). The
default method is 'DR'.

SoP a postive integer (>=2) indicates the size of pre-straum. Only applicable
for the doubly-ranked stratification. Default value is 10.

howGX a character indicates the way to calculate the instrument-exposure asso-
ciations. Two ways are currenly allowed: the instrument-exposure asso-
ciations estimated seperately at each stratum (howGX='SpecificGX'), or
use a fixed instrument-exposure association (howGX='const')

Halve Logical. Indictes whether to split the node by half:half (i.e. 5:5). Default
value is FALSE.

const a value indicates the fixed instrument-exposure association value used for
constructing the Q-tree. Only applicable for howGX='SpecificGX'.

Details

GetIndex helps to decide the splitting covariate at the present node when constructing a
Q-tree.

Value

GetIndex returns a vector with the following three values:’Candidate.index’, ’Q.value’ ,
’node.size’
Candidate.index

The index (position rank) of the chosen covariate.
Q.value The corresponding Q statistic value of the chosen covariate.
minimal.node.size.after.split

The mimimal sample size of the sun-nodes after splitting.
split.style Three values denoted by 1,2,3 representing the splitting style used for the

final covariate. They are 3:7, 5:5, 7:3, respectively.

getMSE 11

References

Burgess, S., Davies, N. M., & Thompson, S. G. (2014). ”Instrumental variable analysis with
a nonlinear exposure–outcome relationship”. Epidemiology (Cambridge, Mass.), 25(6), 877.
(Residual stratification)
Tian, H., Mason, A. M., Liu, C., & Burgess, S. (2022). ”Relaxing parametric assump-
tions for non-linear Mendelian randomization using a doubly-ranked stratification method”.
bioRxiv, 2022-06. (Doubly-ranked stratification)

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set
GetIndex(odat,JJ=20)

getMSE Get MSE Values for the OOB Data or the Testing Data with
Fitted Q-Tree or Random Forest of Q-Trees (RFQT)

Description

getMSE calculates the MSE value for RFQT (or a Q-tree if RFQT only contains one single
tree)

Usage

getMSE(RES,
indicator = 1
)

Arguments

RES a fitting list result from BootstrapTreeFitting or RFQTfit(odat,vdat)$RES.
indicator numeric indicator to judge which type of MSE should be calculated.

indicator=1 for Out-of-Bag (OOB) data and indicator=2 for th testing
data. Defalut value is indicator=1.

Value

getMSE returns a vector of MSE with the increase of the number of Q-trees. The stable
MSE values should indicate an appropriate number of Q-trees.

12 GetNindex

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
res<-getDat(label=FALSE)
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

##When running RFQT with mutiple Q trees/bootstrap - use parallel computation
Nb<-7 #how many trees in the forest? e.g. 5 trees
cl<-makeCluster(2)
clusterEvalQ(cl=cl , expr=library(dplyr))
clusterEvalQ(cl=cl , expr=library(MendelianRandomization))
clusterExport(cl=cl , varlist=c('odat','vdat',

'GetTree', 'GetNindex', 'GetIndex'))
RES<-parSapply(cl , 1:Nb, BootstrapTreeFitting)
stopCluster(cl)
dim(RES)#7 Nb

getMSE(RES,indicator=1)
getMSE(RES,indicator=2)

GetNindex Get the Q Tree End Node Index for Choosen Samples

Description

GetNindex helps to match the Q-tree end node for any inputed samples, and therefore
enables to make further analysis like effect prediction for these inputed samples.

Usage

GetNindex(M,
rdat,
S = NA)

Arguments

M A matrix or data frame contains the candidate covariate information.
rdat A data frame. It is the Q-tree informaton result and obtained by rdat<-GetTree().
S A positive integer indicates the max depth of each sample will explore

along the tree. This number should be consistent with the max depth of
the fitted Q tree (also refected in rdat). The default valus if NA, which
means the code will automatically use the correct S value.

getPars 13

Details

The inputed data set M must contain the same candidate covariate information (with the
same order) as the training data for the Q-tree. In addition, the first four columns (indi-
vidual IDs, the instrument, the exposure, the outcome) need to be removed, so that the fist
column starts from the first candidate covariate.

Value

GetNindex returns a vector with the same length of the row number of the inputed data
M. Each element represents the end node (i.e. leaf) index according to the reference Q-tree
(the tree information was stored within rdat).

Examples

library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

rdat<-GetTree(odat)

vdat_Nindex<-GetNindex(vdat[,5:24] ,rdat)
#the M colnumber and order should be same as the training data

#may use another independent data (estimation data) to
#calculate the endnode-specific IV/MR estimates

#for example:
#let odat halves into trdata (tree data) and estdata (estimation data);
#also we can have rdat<-GetTree(trdata)

trdat<-odat[1: (nrow(odat)/2) ,]#tree data
estdat<-odat[(nrow(odat)/2+1):nrow(odat) ,] #estimaiton data

rdat<-GetTree(trdat)#fitted Q tree

estdat$Nindex<-GetNindex(estdat[,5:24] ,rdat)
#rdat contains the tree information (i.e. decision rule)

getPars Get the present parameters information

14 getPars

Description

getPars returns the information of the (hyper-)parameters relevant to the Q-tree and
RFQT fitting.

Usage

getPars(empty.argument)

Arguments
empty.argument

No arguments are needed.

Value

getPars() returns the following information: the total number of candidate covariates, the
training data size, the testing data siz, the stratification method, the size of pre-stratum
(if applicable), the proportion of the covariates randomly considered in each node split,
the maximal tree depth allowed, the way to calculate the instrument-exposure associations,
the fixed instrument-exposure association level (if applicable), the minimal node size, the
threshold value of the Q statistic.
If the variable is not defined, it will return ’Not defined’ with a value in brackets representing
the default value for this variable when fitting RFQT.
Note that only the variable defined in the global enviroment will be considered. Even if one
defines these variables, the functions like BootstrapTreeFitting and RFQTfit will use the
default value if (s)he does not modify the function arguments.
See the original paper for the details of each parameter information.

Author(s)

Haodong Tian

Examples

library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

res<-getDat()
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

method<-'DR'; SoP<-20; rate<-2/5

getPars()

getPredict 15

getPredict Get predict effects for the OOB Data or the Testing Data with
Fitted Random Forest of Q-Trees (RFQT)

Description

getPredict calculates the predicted individual treatment effect estimates for RFQT, either
for the OOB data or the testing data.

Usage

getPredict(RES,
indicator = 1
)

Arguments

RES a fitting list result from BootstrapTreeFitting or RFQTfit(odat,vdat)$RES.
indicator numeric indicator to judge which type of predicted effect should be pre-

sented. indicator=1 for Out-of-Bag (OOB) data and indicator=2 for
th testing data. Defalut value is indicator=1.

Details

See the relevant part of the original paper for more details of how to predict an individual
effect according to a fitted Q tree (therefore a RFQT).

Value

getPredict returns a matrix where the row corresponds to the sample size (either the OOB
data or the testing data, depending on the indicator used) and the column coresponds to
the number of Q-trees. Each column represents the individual predicted effects with the
present number of Q trees.

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
res<-getDat(label=FALSE)
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

##When running RFQT with mutiple Q trees/bootstrap - use parallel computation
Nb<-7 #how many trees in the forest? e.g. 5 trees

16 GetTree

cl<-makeCluster(2)
clusterEvalQ(cl=cl , expr=library(dplyr))
clusterEvalQ(cl=cl , expr=library(MendelianRandomization))
clusterExport(cl=cl , varlist=c('odat','vdat',

'GetTree', 'GetNindex', 'GetIndex'))
RES<-parSapply(cl , 1:Nb, BootstrapTreeFitting)
stopCluster(cl)
dim(RES)#7 Nb

predict_matrix<-getPredict(RES,indicator=1)
predict_matrix<-getPredict(RES,indicator=2)

dim(predict_matrix)
###View(predict_matrix)

GetTree Fit and Get a Q Tree

Description

GetTree fits a data and construct a Q-tree. The fitted data is directly used to build tree
(so no bootstrap). The tree information will be stored but not cleaned for further analysis.
You may need BootstrapTreeFitting rather than this function.

Usage

GetTree(dat,
S = 5,
Qthreshold = 3.84,
rate = 1,
SpecificM = NA,
method = "DR",
SoP = 10,
howGX = "SpecificGX",
Halve = FALSE,
const = NA,
endsize = 1000)

Arguments

dat a data frame. This data (without any bootstrap) will be fitted to construct
a Q-tree.

S a postive integer indicates the maximum tree depth allowed. Default value
is 5 (i.e. the data set is allowed to be splitted at most 5 times). S is also
conneted to the argument endsize, both of which work in a similar way.
One may only restrict one of them and leave another one be a flexible
value (e.g. S=100 or endsize=0).

GetTree 17

Qthreshold A positive value used as the threshold value for the Q statistic. Default
value is 3.0.

rate a value ranging from 0 to 1 indicates the proportion of the candidate
covariates to be randomly cosidered in each split when construcing the
Q-tree. When rate=1, it means all the candiate covariates will be con-
sidered.

SpecificM a vector indicates the index of candidate variables that can be considered
in spliiting. Tbe default value is NA, which means all candidate variables
are possible to be considered.

method a character indicates the stratification method used for constructing a
Q-tree. There are currently three methods: the Doubly-ranked method
(method='DR'), the residual methods (method='Residual') and the naive
method (recognized by any character except 'DR' and 'Residual'). The
default method is 'DR'.

SoP a postive integer (>=2) indicates the size of pre-straum. Only applicable
for the doubly-ranked stratification. Default value is 10.

howGX a character indicates the way to calculate the instrument-exposure asso-
ciations. Two ways are currenly allowed: the instrument-exposure asso-
ciations estimated seperately at each stratum (howGX='SpecificGX'), or
use a fixed instrument-exposure association (howGX='const')

Halve Logical. Indictes whether to split the node by half:half (i.e. 5:5). Default
value is FALSE.

const a value indicates the fixed instrument-exposure association value used for
constructing the Q-tree. Only applicable for howGX='SpecificGX'.

endsize a positive integer value indicates the minimual size of the node of Q-tree
allowed. One can also control the endsize via S.

Details

dat must be a data frame that can be regonized by the functions. The first four columns
must be the individual IDs, the (one-dimensional) instrument, the exposure (should be NA
if not available), and the outcome, respectively. The (high-dimensional) covariates are then
follwing. Note that all the functions may be working with incorrect column ordering, but
the results are misleading. DO make sure the column variable order is correct.
If simulated data is used, there should be a end column named as true_STE. That is,
dat$true_STE is not NULL.

Value

GetTree returns a data set with the same row dimension as the inputed data dat. The
returned data is ’augmented’ with tree information including the tree end node index, and
the splitting information in each split.

References

Burgess, S., Davies, N. M., & Thompson, S. G. (2014). ”Instrumental variable analysis with
a nonlinear exposure–outcome relationship”. Epidemiology (Cambridge, Mass.), 25(6), 877.
(Residual stratification)

18 getVI

Tian, H., Mason, A. M., Liu, C., & Burgess, S. (2023). ”Relaxing parametric assump-
tions for non-linear Mendelian randomization using a doubly-ranked stratification method”.
PLOS Genetics, 19(6), e1010823. (Doubly-ranked stratification)

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

res<-getDat()
odat<-res$traning.set #training set

tree_result<-GetTree(odat)

getVI Get Varibale Importance Measurements with Fitted Q-Tree or
Random Forest of Q-Trees (RFQT)

Description

getVI calculates the Varibale Importance (VI) measurements for a random forest of Q-trees
(RFQT).

Usage

getVI(RES,
VItype = 2
)

Arguments

RES a fitting list result from BootstrapTreeFitting or RFQTfit(odat,vdat)$RES.
VItype numeric indicator to judge which type of VI measurement should be calcu-

lated. VItype=1 for the classical way with the known individual treatment
effects (i.e. label) and VItype=2 for case that the individual treatment
effects are unavailable (as in most real application). Defalut value is
VItype=2.

Details

See the VI measurement part of the original paper for more detailed VI introduction and
the algorithm.

Value

getVI retuns a vector indicating the variable importacne (VI) measurements for all the
candidate covariates (with the same ordering of the candidate covariates to the original
fitting data).

RFQTfit 19

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
res<-getDat(label=FALSE)
odat<-res$traning.set #training set
vdat<-res$testing.set #testing set

##When running RFQT with mutiple Q trees/bootstrap - use parallel computation
Nb<-7 #how many trees in the forest? e.g. 5 trees
cl<-makeCluster(2)
clusterEvalQ(cl=cl , expr=library(dplyr))
clusterEvalQ(cl=cl , expr=library(MendelianRandomization))
clusterExport(cl=cl , varlist=c('odat','vdat',

'GetTree', 'GetNindex', 'GetIndex'))
RES<-parSapply(cl , 1:Nb, BootstrapTreeFitting)
stopCluster(cl)
dim(RES)#7 Nb

getVI(RES,VItype=1)
getVI(RES,VItype=2)

RFQTfit Fit a Random Forest of Q Trees (RFQT)

Description

RFQTfit fits a data set (the training data) by the random forest of Q trees (RFQT), and
return the summary results.

Usage

RFQTfit(odat,
vdat = NA,
Nb = 5,
S = 5,
honest = FALSE,
rate = 0.4,
SingleM = FALSE,
Qthreshold = 3.84,
method = "DR",
SoP = 10,
howGX = "SpecificGX",
Halve = FALSE,

20 RFQTfit

endsize = 1000,
const = NA,
Cores = NA,
trackfile=NA
)

Arguments

odat a data frame. This is recognized as the trainging data set.
vdat a data frame. This is recognized as the testing or validation data set. The

default value is NA, indicating that no testing data will be considered.
Nb a positive integer indicates the number of bootstrap (i.e. the number of

Q-trees)
S a postive integer indicates the maximum tree depth allowed. Default value

is 5 (i.e. the data set is allowed to be splitted at most 5 times). S is also
conneted to the argument endsize, both of which work in a similar way.
One may only restrict one of them and leave another one be a flexible
value (e.g. S=100 or endsize=0).

honest logical value indicates whether to use the honest estimation style or not.
Default value is FALSE. When honest estimation is used, the tree con-
struction and the leaf-specific estimates will be obtained in two seperate
samples of the (boostrapped) training data.

rate a value ranging from 0 to 1 indicates the proportion of the candidate
covariates to be randomly cosidered in each split when construcing the
Q-tree.

SingleM logical value indicates whether to use one single covariate variable at all
times. Default value is FALSE. If SingleM=TRUE, the covariate used are
the best variable indicated by GetIndex.

Qthreshold a positive value used as the threshold value for the Q statistic. Default
value is 3.84. One can set Qthreshold=0 to ignore the Q-related stopping
rule.

method a character indicates the stratification method used for constructing a
Q-tree. There are currently three methods: the Doubly-ranked method
(method='DR'), the residual methods (method='Residual') and the naive
method (recognized by any character except 'DR' and 'Residual'). The
default method is 'DR'.

SoP a postive integer (>=2) indicates the size of pre-straum. Only applicable
for the doubly-ranked stratification. Default value is 10.

howGX a character indicates the way to calculate the instrument-exposure asso-
ciations. Two ways are currenly allowed: the instrument-exposure asso-
ciations estimated seperately at each stratum (howGX='SpecificGX'), or
use a fixed instrument-exposure association (howGX='const').

Halve logical. Indictes whether to split the node by half:half (i.e. 5:5). Default
value is FALSE.

endsize a positive integer value indicates the minimual size of the node of Q-tree.
S and endsize work in a similar way.

RFQTfit 21

const a value indicates the fixed instrument-exposure association value used for
constructing the Q-tree. Only applicable for howGX='SpecificGX'.

Cores a positive integer indicates the number of cores should be used when run-
ning random forest in parallel. Default value is the number of CPU cores
minus one. You can check the number of CPU cores via detectCores().

trackfile the path string indicates the file to store the running information in par-
allel.

Details

RFQTfit is an integrated function combining other functions, including GetTree, BootstrapTreeFitting,
getPredict, getVI, etc. The fitting automatically uses parallel computation.
The training data Odat and the testing data Vdat should be of the same form and be a data
frame that can be regonized by the functions. The first four columns must be the individual
IDs, the (one-dimensional) instrument, the exposure (should be NA if not available), and the
outcome, respectively. The (high-dimensional) covariates are then follwing. Note that all
the functions may be working with incorrect column ordering, but the results are misleading.
DO make sure the column variable order is correct.

Value

RFQTfit shows all the parameter information used for random forest fitting in the begining,
and returns in the end a list consisting of the following components:

RES The direct fitting results of each Q-tree, which contains end_node_information,
OOB_predict, v_predict, vi1, vi2, ts1 and ts2 (same as the results
of BootstrapTreeFitting) for each Q-tree. Note that RES is multi-
dimensional. If one wishes to obtain the individual predicted effects of
the testing set according to i-th Q-tree, should run RES[3,i]$v_predict.

MSE_OOB the Nb-length vector of MSE results for OOB samples. If one determine
the number of Q-trees to be Nb, simply use the final vlue of MSE_OOB as
the MSE.

MSE_test the Nb-length vector of MSE results for test samples (if the testing set
exists). If one determine the number of Q-trees to be Nb, simply use the
final vlue of MSE_test as the MSE.

Predict_OOB the matrix of predicted effects for OOB samples, where the row corre-
sponds to the sample size (the testing data) and the column coresponds
to the number of Q-trees. Each column represents the individual pre-
dicted effects with the present number of Q trees. If one determine the
number of Q-trees to be Nb, simply use the final colunm of Predict_OOB
as the individual predicted effect vector.

Predict_test the matrix of predicted effects for testing set, where the row corresponds
to the sample size (the testing data) and the column coresponds to the
number of Q-trees. Each column represents the individual predicted ef-
fects with the present number of Q trees. If one determine the number
of Q-trees to be Nb, simply use the final colunm of Predict_test as the
individual predicted effect vector.

22 RFQTfit

VI1 the vector indicates the type I (i.e. with labels) variable importacne (VI)
measurements for all the candidate covariates (with the same ordering of
the candidate covariates to the original fitting data).

VI2 the vector indicates the type II (i.e. without labels) variable importacne
(VI) measurements for all the candidate covariates (with the same order-
ing of the candidate covariates to the original fitting data).

TS the vector of the permutation test statistic values. The two values repre-
sent the values of TS1 and TS2, respectively.

References

Burgess, S., Davies, N. M., & Thompson, S. G. (2014). ”Instrumental variable analysis with
a nonlinear exposure–outcome relationship”. Epidemiology (Cambridge, Mass.), 25(6), 877.
(Residual stratification)
Tian, H., Mason, A. M., Liu, C., & Burgess, S. (2023). ”Relaxing parametric assump-
tions for non-linear Mendelian randomization using a doubly-ranked stratification method”.
PLOS Genetics, 19(6), e1010823. (Doubly-ranked stratification)

Examples
library(MendelianRandomization)
library(tidyverse)
library(data.table)
library(parallel)

set.seed(60)
res<-getDat() #simulated data #the deflaut setting: scenario='A' and SoM=0.5
odat<-res$traning.set
vdat<-res$testing.set

###try: ALLRES<-RFQTfit(odat)

###try: ALLRES<-RFQTfit(odat,vdat,Nb=200)

Index

BootstrapTreeFitting, 2

DTfit, 5

getDat, 8
GetIndex, 9
getMSE, 11
GetNindex, 12
getPars, 13
getPredict, 15
GetTree, 16
getVI, 18

RFQTfit, 19

23

	BootstrapTreeFitting
	DTfit
	getDat
	GetIndex
	getMSE
	GetNindex
	getPars
	getPredict
	GetTree
	getVI
	RFQTfit
	Index

