Comparison of Methods

As always, we begin by loading the package.

library(causl)
library(purrr)
library(survey)

Simulate Data

We first select the variables in our model, choosing the ones mentioned in the running example of Evans and Didelez (2021). In this case the model is given by the graph A0 → L → A1 → Y with A0 → A1 and L ↔︎ Y.

forms <- list(L ~ A0, 
              list(A0 ~ 1, A1 ~ A0*L),
              Y ~ A0*A1, 
              ~ A0)

We next select the parameters for our model, again following Evans and Didelez (2024).

pars <- list(A0 = list(beta = 0),
             L = list(beta = c(0.3,-0.2), phi=1),
             A1 = list(beta = c(-0.3,0.4,0.3,0)),
             Y = list(beta = c(-0.5,0.2,0.3,0), phi=1),
             cop = list(beta = c(1,0.5)))

Now we sample 5, 000 observations from the model (you might like to edit this to increase the sample size to 106, replicating the analysis in Evans and Didelez, 2024):

set.seed(123)
n <- 5e3
dat_max <- causalSamp(n, formulas = forms, pars=pars, family = list(3,c(5,5),1,1))

Now we can check that the distribution actually has the correct form for the first three variables (A0, L, A1):

summary(glm(A0 ~ 1, family=binomial, data=dat_max))$coef
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept)  -0.0216     0.0283  -0.764    0.445
summary(glm(L ~ A0, family=Gamma(link="log"), data=dat_max))$coef
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    0.273     0.0197   13.84 9.42e-43
#> A0            -0.183     0.0281   -6.54 6.87e-11
glmA1 <- glm(A1 ~ A0*L, family=binomial, data=dat_max)
summary(glmA1)$coef
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept)   -0.322     0.0586  -5.506 3.66e-08
#> A0             0.398     0.0837   4.754 2.00e-06
#> L              0.311     0.0347   8.945 3.72e-19
#> A0:L          -0.026     0.0552  -0.472 6.37e-01

Indeed, all the parameters are close to their correct values.

We can also use inverse probability weighting to check the causal relationship for Y.

ps <- fitted(glmA1)
wt <- dat_max$A1/ps + (1-dat_max$A1)/(1-ps)
summary(svyglm(Y ~ A0*A1, design = svydesign(~1, weights=~wt, data = dat_max)))$coef
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  -0.4912     0.0296  -16.62 2.09e-60
#> A0            0.1938     0.0450    4.31 1.68e-05
#> A1            0.2543     0.0407    6.24 4.64e-10
#> A0:A1         0.0737     0.0593    1.24 2.14e-01

For the remainder of this vignette, we will only use the first 1,000 entries of this dataset (change this to the commented out line to replicate results from our paper).

dat <- dat_max[seq_len(2e3), ]
# dat <- dat_max[seq_len(1e4), ]

Outcome Regression

We start with a naïve outcome regression approach, where we fit a linear model for Y regressed on various combinations of A0, A1 and L. As we can see, none yield the parameters that interest us.

lmY_A0A1 <- lm(Y ~ A0*A1, data=dat)
lmY_A0A1_L <- lm(Y ~ A0*A1 + L, data=dat)
lmY_A0A1L <- lm(Y ~ A0*A1*L, data=dat)
summary(lmY_A0A1)$coef
#>             Estimate Std. Error  t value Pr(>|t|)
#> (Intercept) -0.62211     0.0460 -13.5190 6.52e-40
#> A0           0.22298     0.0674   3.3105 9.48e-04
#> A1           0.44969     0.0632   7.1164 1.54e-12
#> A0:A1        0.00593     0.0892   0.0665 9.47e-01
summary(lmY_A0A1_L)$coef
#>             Estimate Std. Error t value  Pr(>|t|)
#> (Intercept)  -1.0403     0.0436 -23.841 9.56e-111
#> A0            0.2604     0.0589   4.418  1.05e-05
#> A1            0.2849     0.0557   5.118  3.38e-07
#> L             0.3978     0.0160  24.794 1.59e-118
#> A0:A1         0.0588     0.0780   0.754  4.51e-01
summary(lmY_A0A1L)$coef
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  -1.0370     0.0563 -18.435 3.39e-70
#> A0            0.0776     0.0820   0.946 3.44e-01
#> A1            0.4825     0.0775   6.230 5.69e-10
#> L             0.3946     0.0379  10.417 8.88e-25
#> A0:A1        -0.0655     0.1092  -0.600 5.49e-01
#> A0:L          0.1906     0.0579   3.291 1.02e-03
#> A1:L         -0.1340     0.0459  -2.920 3.54e-03
#> A0:A1:L       0.0322     0.0693   0.464 6.43e-01

Inverse Propensity Weighting

We can try the rather more principled approach of using inverse propensity score weighting, and this time the estimates are unbiased.

## get the weights from model for A1
glmA1 <- glm(A1 ~ A0*L, family=binomial, data=dat)
ps <- fitted(glmA1)
wt <- dat$A1/ps + (1-dat$A1)/(1-ps) 

lmY_A0A1_w <- svyglm(Y ~ A0*A1, design = svydesign(id=~1, data=dat, weights = ~wt))
summary(lmY_A0A1_w)$coef
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  -0.5454     0.0491 -11.102 7.90e-28
#> A0            0.2452     0.0738   3.323 9.08e-04
#> A1            0.3155     0.0649   4.859 1.27e-06
#> A0:A1        -0.0161     0.0940  -0.171 8.64e-01

Notice that the coefficients are now within their standard errors.

Doubly Robust Approach

We can also use an approach based on doubly-robust estimating equations.

## get datasets with different values of A1
dat0 <- dat1 <- dat
dat0$A1 <- 0
dat1$A1 <- 1

## get outcome models
glmY <- lm(Y ~ A0+A1+I(log(L)), data=dat)
q <- predict(glmY, dat)
q0 <- predict(glmY, dat0)
q1 <- predict(glmY, dat1)

n0 <- sum(dat$A0 == 0)
n1 <- sum(dat$A0 == 1)

## weights
w1 <- fitted(glmA1)
w1[dat$A1==0] <- 1 - w1[dat$A1==0]
w0 <- rep(1, nrow(dat))
# w0 <- predict(glmA0, dat, "response")
# w0[dat$A0==0] <- 1 - w0[dat$A0==0]
w <- w0 * w1


## obtain E[Y | do(A0=a0,A1=a1)] for each (a0,a1)
wts01 <- ((dat$Y - q)*dat$A1/w + q1)[dat$A0 == 0]
wts00 <- ((dat$Y - q)*(1-dat$A1)/w + q0)[dat$A0 == 0]
wts11 <- ((dat$Y - q)*dat$A1/w + q1)[dat$A0 == 1]
wts10 <- ((dat$Y - q)*(1-dat$A1)/w + q0)[dat$A0 == 1]
se00 <- sd(wts00)/sqrt(n0)
se10 <- sd(wts10)/sqrt(n1)
se01 <- sd(wts01)/sqrt(n0)
se11 <- sd(wts11)/sqrt(n1)

cse00_01 <- mean((wts00 - mean(wts00))*(wts01 - mean(wts01)))/n0
cse10_11 <- mean((wts10 - mean(wts10))*(wts11 - mean(wts11)))/n1

## use these to obtain estimates, standard errors and bias
est <- c(mean(wts00), mean(wts10) - mean(wts00), 
         mean(wts01 - wts00), mean(wts11 - wts10) - mean(wts01 - wts00))
se <- c(se00, 
        sqrt(se10^2 - 2*cse00_01 + se00^2), 
        sqrt(se01^2 + se00^2),
        sqrt(se10^2 - 2*cse00_01 + se00^2) + sqrt(se10^2 - 2*cse10_11 + se11^2))

bias <- est - pars$Y$beta
tab_dr <- cbind(est, se, bias)
rownames(tab_dr) <- rownames(tab_ipw)
colnames(tab_dr) <- c("Est.", "SE", "Bias")
tab_dr
#>                Est.     SE    Bias
#> (Intercept) -0.5510 0.0450 -0.0510
#> A0           0.2464 0.0620  0.0464
#> A1           0.3283 0.0606  0.0283
#> A0:A1       -0.0218 0.1148 -0.0218

Maximum Likelihood

Finally, we can fit using our own code with the black-box optimizer, and since we are fitting the correct model it is guaranteed to be consistent and asymptotically efficient.

modY <- fitCausal(dat, formulas = list(Y ~ A0*A1, L ~ A0, ~ A0*A1),
                  family = c(1,3,1), control=list(maxit=2e4, newton=TRUE))
#> Warning: `fitCausal()` was deprecated in causl 0.8.8.
#> ℹ Please use `fit_causl()` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Newton's algorithm failed, exiting
modY
#> log-likelihood:  -4766 
#> Y ~ A0 * A1
#>                 est.   s.e. sandwich
#> (intercept) -0.54986 0.0427   0.0429
#> A0           0.23261 0.0599   0.0606
#> A1           0.31747 0.0559   0.0555
#> A0:A1       -0.00193 0.0744   0.0743
#>   residual s.e.:  0.97 0.0307 0.0308 
#> 
#> L ~ A0
#>               est.   s.e. sandwich
#> (intercept)  0.242 0.0328   0.0326
#> A0          -0.124 0.0454   0.0450
#>   residual s.e.:  1.05 0.029 0.0302 
#> 
#> copula parameters:
#> cop ~ A0 + A1 + A0:A1
#> cop_Y_L:
#>               est.   s.e. sandwich
#> (intercept)  1.105 0.0895   0.0851
#> A0           0.321 0.1226   0.1187
#> A1          -0.125 0.1180   0.1172
#> A0:A1        0.259 0.1604   0.1582

Comparison of Results

Outcome regression fails miserably, but this is to be expected because the model is hopelessly misspecified. IP weighting, double robust estimates and the MLE all appear to be correct.

Outcome Regression
IP Weighting
Double Robust
MLE
Est. SE Bias Est. SE Bias Est. SE Bias Est. SE Bias
(Intercept) -0.62 0.046 -0.122 -0.55 0.049 -0.045 -0.55 0.045 -0.051 -0.55 0.043 -0.050
A0 0.22 0.067 0.023 0.25 0.074 0.045 0.25 0.062 0.046 0.23 0.061 0.033
A1 0.45 0.063 0.150 0.32 0.065 0.015 0.33 0.061 0.028 0.32 0.055 0.017
A0:A1 0.01 0.089 0.006 -0.02 0.094 -0.016 -0.02 0.115 -0.022 0.00 0.074 -0.002

The code below (which we do not run because it takes over a minute) will allow you to compare N = 103 results each with sample size n = 250 via a naïve regression and inverse probability weighting.

set.seed(234)
n <- 250
N <- 1e3
out_ipw <- matrix(NA, N, 4)
colnames(out_ipw) <- c("int", "A0", "A1", "A0_A1")
out_or <- se_ipw <- se_or <- out_ipw
out_mle <- se_mle <- out_ipw

for (i in seq_len(N)) {
  dat <- causalSamp(n, formulas = forms, pars = pars, family = list(3,c(5,5),1,1))
  
  ## get naive estimates
  lm_or <- summary(svyglm(Y ~ A0*A1, design=svydesign(~1, weights = rep(1,nrow(dat)), data=dat)))
  
  out_or[i,] <- lm_or$coef[,1]
  se_or[i,] <- lm_or$coef[,2]
  
  ## get weights for IPW
  glmA1 <- glm(A1 ~ A0*L, family=binomial, data=dat)
  tmp <- fitted(glmA1)
  wts <- dat$A1/tmp + (1-dat$A1)/(1-tmp)
  
  ## get IPW estimates
  lm_ipw <- summary(svyglm(Y ~ A0*A1, design=svydesign(~1, weights=wts, data=dat)))
  
  out_ipw[i,] <- lm_ipw$coef[,1]
  se_ipw[i,] <- lm_ipw$coef[,2]
  
  ## get MLEs
  tmp <- fitCausal(dat, formulas = forms[-2], family = list(3,1,1))
  out_mle[i,] <- tmp$pars$Y$beta
  se_mle[i,] <- tmp$pars$Y$beta_sandwich
  
  printCount(i)
}