--- title: "Plotting" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Plotting} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Manhattan Here is a simple example of using the `manhattan()` plot function. ```{r setup_manhattan, eval=FALSE} library(genepi.utils) gwas <- generate_random_gwas_data(100000) highlight_snps <- gwas[["SNP"]][[which.min(gwas[["P"]])]] annotate_snps <- gwas[["SNP"]][[which.min(gwas[["P"]])]] p <- manhattan(gwas, highlight_snps = highlight_snps, highlight_win = 250, annotate_snps = annotate_snps, hit_table = TRUE, title = "Manhattan Plot", subtitle = "Example 1") ``` ```{r save_manhattan, eval=FALSE, include=FALSE} png("figures/manhattan.png", width=1200, height=400, units="px") p dev.off() ``` ```{r show_manhattan, echo=FALSE, out.width="98%"} knitr::include_graphics("figures/manhattan.png") ``` ## Miami Here is a simple example of using the `miami()` plot function. The use of named lists (i.e. 'top' and 'bottom') for the parameters is not strictly necessary, but helps readability. ```{r setup_miami, eval=FALSE, message=FALSE, warning=FALSE} library(genepi.utils) gwas_top <- generate_random_gwas_data(100000) gwas_bottom <- generate_random_gwas_data(100000) highlight_snps_top <- gwas[["SNP"]][[which.min(gwas[["P"]])]] highlight_snps_botttom <- gwas[["SNP"]][[which.max(gwas[["P"]])]] annotate_snps_top <- gwas[["SNP"]][[which.min(gwas[["P"]])]] annotate_snps_botttom <- gwas[["SNP"]][[which.max(gwas[["P"]])]] colours_top <- c("#67A3D9","#C8E7F5") colours_bottom <- c("#F8B7CD","#F6D2E0") p <- miami(gwases = list("top"=gwas_top, "bottom"=gwas_bottom), highlight_snps = list("top"=highlight_snps_top, "bottom"=highlight_snps_botttom), highlight_win = list("top"=250,"bottom"=250), annotate_snps = list("top"=annotate_snps_top, "bottom"=annotate_snps_botttom), colours = list("top"=colours_top, "bottom"=colours_bottom), downsample = 0.0, hit_table = TRUE, title = "Miami Plot", subtitle = list("top"="A", "bottom"="B")) ``` ```{r save_miami, include=FALSE, eval=FALSE} png("figures/miami.png", width=1200, height=750, units="px") p dev.off() ``` ```{r show_miami, echo=FALSE, out.width="98%"} knitr::include_graphics("figures/miami.png") ``` ## EAF plot ```{r setup_eaf, eval=FALSE} library(genepi.utils) gwas <- generate_random_gwas_data(100000) gwas[1:100, EUR_EAF := NA] p <- eaf_plot(gwas, eaf_col = "EAF", ref_eaf_col = "EUR_EAF", tolerance = 0.2, colours = list(missing="#5B1A18", outlier="#FD6467", within="#7294D4"), title = "EAF study vs. reference plot") ``` ```{r save_eaf, eval=FALSE, include=FALSE} png("figures/eaf_plot.png", width=600, height=600, units="px") p dev.off() ``` ```{r show_eaf, echo=FALSE, out.width="80%", fig.align='center'} knitr::include_graphics("figures/eaf_plot.png") ```