Package 'gwasglue'

Title: GWAS summary data sources connected to analytical tools
Description: Many tools exist that use GWAS summary data for colocalisation, fine mapping, Mendelian randomization, visualisation, etc. This package is a conduit that connects R packages that can retrieve GWAS summary data to various tools for analysing those data.
Authors: Gibran Hemani [aut, cre]
Maintainer: Gibran Hemani <[email protected]>
License: MIT + file LICENSE
Version: 0.0.0.9000
Built: 2024-12-24 03:17:43 UTC
Source: https://github.com/MRCIEU/gwasglue

Help Index


Perform LD clumping

Description

<full description>

Usage

clump_gwasvcf(
  vcf,
  clump_kb = 1000,
  clump_r2 = 0.001,
  clump_p = 5e-08,
  pop = NULL,
  bfile = NULL,
  plink_bin = NULL,
  access_token = NULL
)

Arguments

vcf

VCF file or VCF object

clump_kb

Clumping kb window. Default is very strict, 10000

clump_r2

Clumping r2 threshold. Default is very strict, 0.001

clump_p

Clumping sig level for index variants. Default = 1 (i.e. no threshold)

pop

Super-population to use as reference panel. Default = "EUR". Options are EUR, SAS, EAS, AFR, AMR. 'legacy' also available - which is a previously used verison of the EUR panel with a slightly different set of markers

bfile

If this is provided then will use the API. Default = NULL

plink_bin

If null and bfile is not null then will detect packaged plink binary for specific OS. Otherwise specify path to plink binary. Default = NULL

access_token

Google OAuth2 access token. Used to authenticate level of access to data

Value

data frame of clumped results


Perform conditional analysis using GCTA COJO

Description

For a list of fine-mapped rsids, will assign to regions and generate conditionally independent summary stats for each rsid

Usage

cojo_cond(
  vcffile,
  bfile,
  snplist,
  pop,
  gcta = genetics.binaRies::get_gcta_binary(),
  workdir = tempdir(),
  threads = 1
)

Arguments

vcffile

Path to vcffile

bfile

LD reference panel

snplist

List of rsids

pop

EUR, ASN or AFR

gcta

Path to gcta binary. For convenience can use default=genetics.binaRies::get_gcta_binary()

workdir

Location to store temporary files. Default=tempdir()

threads

Number of parallel threads. Default=1

Value

List of independent summary stats


Write vcf file to cojo sumstat file

Description

Write vcf file to cojo sumstat file

Usage

cojo_sumstat_file(vcffile, outfile)

Arguments

vcffile

Path to vcf file

outfile

Path to output file

Value

vcf object


Convert coloc dataset to gassocplot dataset

Description

Convert coloc dataset to gassocplot dataset

Usage

coloc_to_gassocplot(coloclist, bfile = NULL, plink_bin = NULL)

Arguments

coloclist

Output from *_to_coloc

bfile

If number of SNPs > 500 then need to provide your own LD reference panel. Provide plink dataset here.

plink_bin

If number of SNPs > 500 then need to provide your own LD reference panel. Provide plink executable here

Value

List to feed into gassocplot


Generate coloc dataset from vcf files

Description

Generate coloc dataset from vcf files

Usage

gwasvcf_to_coloc(vcf1, vcf2, chrompos)

Arguments

vcf1

VCF object or path to vcf file

vcf2

VCF object or path to vcf file

chrompos

Character of chr:pos1-pos2

Value

List of datasets to feed into coloc


Generate data for fine mapping analysis

Description

For a given region and VCF file, extracts the variants in the region along with LD matrix from a reference panel

Usage

gwasvcf_to_finemapr(
  region,
  vcf,
  bfile,
  plink_bin = genetics.binaRies::get_plink_binary(),
  threads = 1
)

Arguments

region

Region of the genome to extract eg 1:109317192-110317192". Can be array

vcf

Path to VCF file or VCF object

bfile

LD reference panel

plink_bin

Path to plink. Default = genetics.binaRies::get_plink_binary()

threads

Number of threads to run in parallel. Default=1

Value

List of datasets for finemapping


Create exposure or outcome data format for TwoSampleMR from vcf

Description

Create exposure or outcome data format for TwoSampleMR from vcf

Usage

gwasvcf_to_TwoSampleMR(vcf, type = "exposure")

Arguments

vcf

VCF object

type

="exposure" or "outcome"

Value

data frame


Generic harmonisation function

Description

Assumes ref and alt alleles available for target and reference datasets, and uses chr:pos for alignment

Usage

harmonise(
  chr1,
  pos1,
  ref1,
  alt1,
  chr2,
  pos2,
  ref2,
  alt2,
  rsid2 = NULL,
  indel_recode = FALSE,
  strand_flip = FALSE
)

Arguments

chr1

Vector

pos1

Vector

ref1

Vector

alt1

Vector

chr2

Vector

pos2

Vector

ref2

Vector

alt2

Vector

rsid2

Optional vector

indel_recode

=FALSE. If TRUE then attempts to recode D/I

strand_flip

=FALSE. If TRUE then attempts to flip strand when alignment is not otherwise possible

Details

0: stick 1: swap 2: rename indel 3: rename indel and swap 4: flip 5: flip and swap 6: drop (no match) 7: drop (no reference)

Value

Dataframe of outcomes


Harmonise gwas alleles to be same as reference

Description

Harmonise gwas alleles to be same as reference

Usage

harmonise_against_ref(gwas, reference)

Arguments

gwas

<what param does>

reference

<what param does>

Value

data frame with attributes


Generate coloc dataset from the IEU GWAS database

Description

Generate coloc dataset from the IEU GWAS database

Usage

ieugwasr_to_coloc(id1, id2, chrompos, type1 = NULL, type2 = NULL)

Arguments

id1

ID for trait 1

id2

ID for trait 2

chrompos

Character of chr:pos1-pos2

type1

Provide "cc" or "quant" to override automatic lookup of trait type for trait 1

type2

Provide "cc" or "quant" to override automatic lookup of trait type for trait 2

Value

List of datasets to feed into coloc


Generate data for analysis in various finemapping methods

Description

Uses the finemapr package https://github.com/variani/finemapr

Usage

ieugwasr_to_finemapr(region, id, bfile = NULL, plink_bin = NULL)

Arguments

region

Region of the genome to extract eg 1:109317192-110317192"

id

Array of GWAS studies to query. See gwasinfo for available studies

bfile

If this is provided then will use the API. Default = NULL

plink_bin

If null and bfile is not null then will detect packaged plink binary for specific OS. Otherwise specify path to plink binary. Default = NULL

Value

Each id will be a list of z score data, ld matrix, and sample size


Generate regional plot for ieugwasr

Description

Uses James Staley's gassocplot package https://github.com/jrs95/gassocplot

Usage

ieugwasr_to_gassocplot(chrpos, id, bfile = NULL, plink_bin = NULL)

Arguments

chrpos

A window range to plot e.g. 16:3349655-3849655

id

Vector of one or more IEU GWAS db study IDs

bfile

If number of SNPs > 500 then need to provide your own LD reference panel. Provide plink dataset here.

plink_bin

If number of SNPs > 500 then need to provide your own LD reference panel. Provide plink executable here

Value

assoc_plot or stack_assoc_plot if multiple markers given


Convert output from query to TwoSampleMR format

Description

Convert output from query to TwoSampleMR format

Usage

ieugwasr_to_TwoSampleMR(x, type = "exposure")

Arguments

x

Output from ieugwasr query e.g. associations, tophits, phewas

type

"exposure" (default) or "outcome"

Value

data frame


Check a GWAS dataset against a reference known to be on the forward strand

Description

Assuming reference data is all on forward strand, check if the GWAS is also. Use some threshold e.g. if more than 90 need to be flipped then it's likely that the dataset is on the forward strand

Usage

is_forward_strand(
  gwas_snp,
  gwas_a1,
  gwas_a2,
  ref_snp,
  ref_a1,
  ref_a2,
  threshold = 0.9
)

Arguments

gwas_snp

Vector of SNP names for the dataset being checked

gwas_a1

Vector of alleles

gwas_a2

Vector of alleles

ref_snp

Vector of SNP names for the reference dataset

ref_a1

Vector of alleles

ref_a2

Vector of alleles

threshold

=0.9 If the proportion of allele strands match is above this threshold, then declare the dataset to be on the forward strand

Details

This function can be used to evaluate how strict harmonisation should be The trade off if you assume we are not on the forward strand then palindromic SNPs are dropped within a particular frequency range But you could instead have some small probability of error for whether palindromic SNPs are on the forward strand, and avoid dropping too many variants.

Value

1 = Forward strand; 2 = Not on forward strand


Create a harmonised dataset from lists of vcf files

Description

This mimics the TwoSampleMR::make_dat function, which automatically looks up exposure and outcome datasets and harmonises them, except this function uses GWAS-VCF datasets instead. The supporting reference datasets can be accessed by UoB users on BC4 using set_bc4_files()

Usage

make_TwoSampleMR_dat(
  id1,
  id2,
  proxies = TRUE,
  nthreads = 1,
  vcfdir = options()$gwasglue.vcfdir,
  proxydb = options()$gwasglue.proxydb,
  rsidx = options()$gwasglue.rsidx,
  bfile = options()$gwasglue.bfile,
  action = 1,
  plink_bin = genetics.binaRies::get_plink_binary()
)

Arguments

id1

Exposure datasets. Either an array of vcf files, or array of IDs if vcfdir is set

id2

Outcome datasets. Either an array of vcf files, or array of IDs if vcfdir is set

proxies

Lookup proxies? default=TRUE but requires either bfile or proxydb to be set

nthreads

Parellelise default=1

vcfdir

Location of vcf files if id1 and id2 are just IDs. Defaults to options()$gwasglue.vcfdir

proxydb

Location of LD proxy database Default=options()$gwasglue.proxydb

rsidx

Location of rsidx index database Default=options()$gwasglue.rsidx

bfile

Location of LD reference panel Default=options()$gwasglue.bfile

Value

harmonised dataset


For a set of variants map to LD regions

Description

LD regions defined here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731402/

Usage

map_variants_to_regions(chrpos, pop)

Arguments

chrpos

Array of chr:pos

pop

EUR, AFR or ASN


Figure out specific files and IDs depending on what files exist and whethet vcfdir is set

Description

Figure out specific files and IDs depending on what files exist and whethet vcfdir is set

Usage

organise_ids(id, vcfdir)

Arguments

id

List of IDs within the vcfdir structure, or a list of GWAS VCF files, or a mixture

vcfdir

Location of GWAS VCF files, or NULL if id is a list of actual files

Value

File paths to all datasets


Read in GWAS dataset

Description

Read in GWAS dataset

Usage

read_gwas(
  filename,
  skip,
  delimiter,
  gzipped,
  snp,
  nea,
  ea,
  ea_af,
  effect,
  se,
  pval,
  n,
  info,
  z
)

Arguments

filename

<what param does>

skip

<what param does>

delimiter

<what param does>

gzipped

<what param does>

snp

<what param does>

nea

<what param does>

ea

<what param does>

ea_af

<what param does>

effect

<what param does>

se

<what param does>

pval

<what param does>

n

<what param does>

info

<what param does>

z

<what param does>

Value

data frame with log attributes


Read in reference dataset

Description

Read in reference dataset

Usage

read_reference(
  reference_file,
  rsid = NULL,
  chrompos = NULL,
  remove_dup_rsids = TRUE
)

Arguments

reference_file

Reference vcf

rsid

List of variants to read

chrompos

List of chrompos to read

remove_dup_rsids

=TRUE Remove duplicates from output

Value

data frame


Determine locations of useful reference datasets on bluecrystal4

Description

This is a convenience function for members at the University of Bristol to automatically set file locations for various reference datasets. It relates only to paths on bc4

Usage

set_bc4_files()

Perform fine mapping pipeline using susieR

Description

Clumps data, then maps those to LD representative regions. Within each detected LD representative region, fine mapping is performed

Usage

susieR_pipeline(
  vcffile,
  bfile,
  plink_bin,
  pop,
  threads = 1,
  clump_kb = 1000,
  clump_r2 = 0.001,
  clump_p = 5e-08,
  ...
)

Arguments

vcffile

Path to vcf file

bfile

Path to ld reference panel

plink_bin

Path to plink

pop

EUR, ASN or AFR

clump_kb

<what param does>

clump_r2

<what param does>

clump_p

<what param does>

...

Optional arguments to be passed to susie_rss

Value

List


Create format for HPC pipeline

Description

Takes raw files and aligns them to reference. Important if files don't have chr:pos already

Usage

write_out(harmonised, path)

Arguments

harmonised

Output from /codeharmonise_against_ref

path

Path to write out json file and txt file