Title: | Statistical Tests and Utilities for Genetic Association |
---|---|
Description: | A collection of statistical tests for genetic association studies and summary data based Mendelian randomization. |
Authors: | Dr. Kai Wang |
Maintainer: | Kai Wang <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.6.1 |
Built: | 2025-01-07 04:45:02 UTC |
Source: | https://github.com/cran/iGasso |
iGasso
is a collection of statistical tests developed by our group for genetic association studies. So far it contains functions for rare variants association, for association with multiple phenotypes, for linear mixed model analysis, and for model-free association analysis. There is also a function for genome plot. It will keep growing as more tests are developed. Use ?iGasso
to see an introduction.
Package: | iGasso |
Type: | Package |
Version: | 1.6 |
Date: | 2023-09-16 |
License: | GPL (>=2) |
LazyLoad: | yes |
Kai Wang <[email protected]>
Anscombe F.J. (1948) The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254.
Chanter, D. O. (1975). Modifications of the angular transformation. Journal of the Royal Statistical Society. Series B (Applied Statistics), 24 (3), 354–359.
Freeman, M. F., Tukey, J. W. (1950) Transformations related to the angular and the square root. The Annals of Mathematical Statistics 21(4), 607–611.
Wang, K. (2012) An application of the proportional odds model to genetic association studies. Submitted.
Wang K. (2012) Statistical tests of genetic association for case-control study designs. Biostatistics. Accepted. PMID: 22389176
Wang, K., Fingert, J. (2012) Statistical tests for detecting rare variants using variance-stabilizing transformations. Annals of Human Genetics. Accepted.
Zar, J. H. (1999) Biostatistical Analysis, 4th ed., New Jersey:Prentice-Hall, Inc.
y = rnorm(100) chr = c(rep(1, 20), rep(3, 20), rep(10, 20), rep(19, 30), rep("X", 10)) pos = c(1:20, 1:20, 1:20, 1:30, 1:10) mydata = data.frame(y=y, chr=chr, pos=pos) genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic") G = rbind(c(14, 999), c(3, 1081)) VSTF.test(G) G = rbind(c(161, 474, 489), c(231, 444, 380)) MFree.test(G) G = matrix(sample(c(0,1,2), 200, replace=TRUE), ncol=10) y = rnorm(10) X = matrix(rnorm(10), ncol=1)
y = rnorm(100) chr = c(rep(1, 20), rep(3, 20), rep(10, 20), rep(19, 30), rep("X", 10)) pos = c(1:20, 1:20, 1:20, 1:30, 1:10) mydata = data.frame(y=y, chr=chr, pos=pos) genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic") G = rbind(c(14, 999), c(3, 1081)) VSTF.test(G) G = rbind(c(161, 474, 489), c(231, 444, 380)) MFree.test(G) G = matrix(sample(c(0,1,2), 200, replace=TRUE), ncol=10) y = rnorm(10) X = matrix(rnorm(10), ncol=1)
genome.plot
plots the value of a variable across the genome.
genome.plot( mydata, style = 1, type = "h", sig.line = c(4, -4), sig.color = c("red", "red"), ... )
genome.plot( mydata, style = 1, type = "h", sig.line = c(4, -4), sig.color = c("red", "red"), ... )
mydata |
a data frame containing three variables: |
style |
either |
type |
a generic graphic parameter. Recommended values are |
sig.line |
vertical locations of significance lines. |
sig.color |
colors of significance lines. |
... |
other parameters to be passed to function |
This function makes use of the function xyplot
from package lattice
.
Kai Wang <[email protected]>
y = rnorm(100) chr = c(rep(1, 20), rep(3, 20), rep(10, 20), rep(19, 30), rep("X", 10)) pos = c(1:20, 1:20, 1:20, 1:30, 1:10) mydata = data.frame(y=y, chr=chr, pos=pos) mydata2 = data.frame(y=y^2, chr=chr, pos=pos) genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic") genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic", type="b") genome.plot(mydata2, sig.line=c(2), ylab="y squared") genome.plot(mydata, style=2, sig.line=c(1, -1), ylab="T Statistic") genome.plot(mydata, style=2, sig.line=c(1, -1), ylab="T Statistic", type="b")
y = rnorm(100) chr = c(rep(1, 20), rep(3, 20), rep(10, 20), rep(19, 30), rep("X", 10)) pos = c(1:20, 1:20, 1:20, 1:30, 1:10) mydata = data.frame(y=y, chr=chr, pos=pos) mydata2 = data.frame(y=y^2, chr=chr, pos=pos) genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic") genome.plot(mydata, sig.line=c(1, -1), ylab="T Statistic", type="b") genome.plot(mydata2, sig.line=c(2), ylab="y squared") genome.plot(mydata, style=2, sig.line=c(1, -1), ylab="T Statistic") genome.plot(mydata, style=2, sig.line=c(1, -1), ylab="T Statistic", type="b")
h2_snp
calculates heritability explained by a set of SNPs
h2_snp(beta, SE, N, R, alpha)
h2_snp(beta, SE, N, R, alpha)
beta |
a vector of beta coefficients for a set of SNPs. These coefficients are from a GWAS. |
SE |
a vector of the standard errors of the beta coefficients. |
N |
a vector of sample sizes used by the GWAS at these SNPs. |
R |
LD matrix for these SNPs. |
alpha |
|
A list containing the following components:
* MLE of the heritability.
* umvu (uniformly minimum variance unbiased) estimator of the heritability.
* interval estimate for the heritability.
Kai Wang <[email protected]>
Wang, K. (2023) An exact method for SNP-heritability estimation using GWAS summary statistics without heritability modeling. submitted
beta = c(0.225269, 0.221270, 0.162635, 0.261669, 0.150887, 0.214515, 0.170296, 0.204454, 0.254811, 0.213803) SE = c(0.033244, 0.032551, 0.032171, 0.031042, 0.032815, 0.031908, 0.031717, 0.032023, 0.031907, 0.032291) N = 10000 R = diag(1, 10) alpha = 0.05 h2_snp(beta, SE, N, R, alpha)
beta = c(0.225269, 0.221270, 0.162635, 0.261669, 0.150887, 0.214515, 0.170296, 0.204454, 0.254811, 0.213803) SE = c(0.033244, 0.032551, 0.032171, 0.031042, 0.032815, 0.031908, 0.031717, 0.032023, 0.031907, 0.032291) N = 10000 R = diag(1, 10) alpha = 0.05 h2_snp(beta, SE, N, R, alpha)
Computes the asymptotic and the approximate conditional p-values for the kernel association test
KAT.coin(y, G, X = NULL, out_type = "D", distribution = "asymptotic", B = 1000)
KAT.coin(y, G, X = NULL, out_type = "D", distribution = "asymptotic", B = 1000)
y |
a vector of phenotype on |
G |
an |
X |
a matrix of covariates. It has |
out_type |
an indicator of the outcome type. |
distribution |
a character, the conditional null distribution of the test statistic can be approximated by its asymptotic distribution ("asymptotic", default) or via Monte Carlo resampling ("approximate"), as in package |
B |
the number of permutations if |
The asymptotic conditional null distribution is obtained using results in Strasser and Weber (1999). The p-value based on this distribution is computed using Davies' method.
A list with class "htest
" containing the following components:
* statistic the value of the kernel association test statistic.
* parameter sample size and the number of SNPs.
* p.value the p-value based on the asymptotic or the approximate conditional null distribution.
* method a character string indicting the test performed.
* data.name a character string giving the name of the data.
Kai Wang <[email protected]>
Strasser, H. and Weber, C. (1999) On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics. 8(2):220-250.
Wang, K. (2017) Conditional Inference for the Kernel Association Test. Bioinformatics 33 (23), 3733-3739.
n=1000 y = c(rep(1, n/2), rep(0, n/2)) maf = seq(0.05, 0.5, 0.05) g = NULL for (j in 1:10){ geno.freq = c(maf[j]^2, 2*maf[j]*(1-maf[j]), (1-maf[j])^2) g = cbind(g, sample(c(0,1,2), n, replace=TRUE, prob=geno.freq)) } KAT.coin(y, g, X=NULL, out_type="D", B=1000)
n=1000 y = c(rep(1, n/2), rep(0, n/2)) maf = seq(0.05, 0.5, 0.05) g = NULL for (j in 1:10){ geno.freq = c(maf[j]^2, 2*maf[j]*(1-maf[j]), (1-maf[j])^2) g = cbind(g, sample(c(0,1,2), n, replace=TRUE, prob=geno.freq)) } KAT.coin(y, g, X=NULL, out_type="D", B=1000)
MFree.test
performs tests on association between an SNP and case-control status. It tests whether the frequencies of an allele are the same between cases and controls. It does not require specification of an inheritance model.
MFree.test(G, method = "score")
MFree.test(G, method = "score")
G |
a |
method |
a character string indicating the test statistic to use. One of |
Each test is named after the author(s) of the corresponding publication.
A list with class "test
" containing the following components:
* statistic the value of the test statistic.
* p.value the p-value for the test computed from a chi-square distribution with 1 df.
* method a character string indicting the test performed.
* data.name a character string giving the name of the data.
Kai Wang <[email protected]>
Wang K. (2012) Statistical tests of genetic association for case-control study designs. Biostatistics. 13(4):724-33. PMID: 22389176
G = rbind(c(161, 474, 489), c(231, 444, 380)) MFree.test(G) MFree.test(G, method = "Wald") MFree.test(G, method = "LRT")
G = rbind(c(161, 474, 489), c(231, 444, 380)) MFree.test(G) MFree.test(G, method = "Wald") MFree.test(G, method = "LRT")
MR_het_test
performs tests of heterogeneity in MR.
MR_het_test(x.b, y.b, x.se, y.se, b0, k = NULL, cum.prop = 0.8)
MR_het_test(x.b, y.b, x.se, y.se, b0, k = NULL, cum.prop = 0.8)
x.b |
a vector of the estimated regression coefficients from the SNP-exposure GWAS |
y.b |
a vector of the estimated regression coefficients from the SNP-outcome GWAS |
x.se |
a vector of SEs for |
y.se |
a vector of SEs for |
b0 |
a value used for the common effect size. It is used for the weighting matrix |
k |
the number of principal components used. It is used by the |
cum.prop |
threshold for selecting |
A list containing the following components:
* statistic and its
-value.
* statistic, its degrees of freedom, and its
-value.
Kai Wang <[email protected]>
Wang, K, Alberding, Steven Y. (2024) Powerful test of heterogeneity in two-sample summary-data Mendelian randomization. Submitted.
p = 10 b = 0.5 gamma.true = runif(p, 0.34, 1.1) x.se = runif(p, 0.06, 0.1) y.se = runif(p, 0.015, 0.11) x.b = rnorm(p, gamma.true, x.se) y.b = rnorm(p, b*gamma.true, y.se) b0 = 0.4 MR_het_test(x.b, y.b, x.se, y.se, b0)
p = 10 b = 0.5 gamma.true = runif(p, 0.34, 1.1) x.se = runif(p, 0.06, 0.1) y.se = runif(p, 0.015, 0.11) x.b = rnorm(p, gamma.true, x.se) y.b = rnorm(p, b*gamma.true, y.se) b0 = 0.4 MR_het_test(x.b, y.b, x.se, y.se, b0)
SKATlus
provides enhanced power over SKAT by properly estimating the null distribution of SKAT.This version uses only subjects with lower phenotypic values for estimating the null distribution. That is, the "controls" are those of lower phenotypic values. When "controls" are of higher phenotypic values, change the sign of the phenotypic values in order to use this function.
SKATplus( y, G, X = NULL, out_type = "D", tau = NULL, permutation = FALSE, B = 1000 )
SKATplus( y, G, X = NULL, out_type = "D", tau = NULL, permutation = FALSE, B = 1000 )
y |
a vector of phenotype on |
G |
an |
X |
a matrix of covariates. It has |
out_type |
an indicator of the outcome type. |
tau |
proportion of selected subjects used for SKATplus. |
permutation |
an indicator. Use permutation for p-value or not. |
B |
the number of permutations if |
A list with class "htest
" containing the following components:
* statistic the value of the test statistic, which is the same as SKAT statistic.
* parameter sample size and the number of SNPs
* p.value the p-value for SKATplus computed using Davies' method.
* method a character string indicting the test performed.
* data.name a character string giving the name of the data.
Kai Wang <[email protected]>
Wang, K. (2016) Boosting the power of the sequence kernel association test (SKAT) almost surely by properly estimating its null distribution. A J Hum Genet. 99 (1), 104-114.
n=1000 y = c(rep(1, n/2), rep(0, n/2)) maf = seq(0.05, 0.5, 0.05) g = NULL for (j in 1:10){ geno.freq = c(maf[j]^2, 2*maf[j]*(1-maf[j]), (1-maf[j])^2) g = cbind(g, sample(c(0,1,2), n, replace=TRUE, prob=geno.freq)) } SKATplus(y, g, X=NULL, out_type="D", tau=NULL, permutation=FALSE, B=1000)
n=1000 y = c(rep(1, n/2), rep(0, n/2)) maf = seq(0.05, 0.5, 0.05) g = NULL for (j in 1:10){ geno.freq = c(maf[j]^2, 2*maf[j]*(1-maf[j]), (1-maf[j])^2) g = cbind(g, sample(c(0,1,2), n, replace=TRUE, prob=geno.freq)) } SKATplus(y, g, X=NULL, out_type="D", tau=NULL, permutation=FALSE, B=1000)
SMR_interval
calculates conservative box method interval, k-unit support interval, and Wald confidence interval for the causal effect.
SMR_interval( summary.data, sig.level = 5e-08, k = 2, alpha = 0.05, method = "box" )
SMR_interval( summary.data, sig.level = 5e-08, k = 2, alpha = 0.05, method = "box" )
summary.data |
a vector ( |
sig.level |
the threshold |
k |
the unit used for the k-unit support. The default value is 2. |
alpha |
|
method |
method to construct the interval. It is either " |
The returned value is method-dependent.
For method == "box"
: A list containing the following components:
* an interval estimate.
* type of the interval: completely bounded, exclusive bounded, or bounded.
For method == "support"
: A list containing the following components:
* Estimate The likelihood estimate of .
* an interval estimate.
For method == "wald"
: an interval estimate.
Kai Wang <[email protected]>
Wang, K. (2023) Support interval for two-sample summary data-based mendelia randomization. Genes, 14(1):211.
Wang, K. (2023) Interval estimate of causal effect in summary data based Mendelian randomization in the presence of winner’s curse. Genetic Epidemiology, 14(1):211.
Zhu, Z. et al. (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48(5):481.
summary.data = c(0.13707, 0.0235162, -0.0637257, 0.013774) SMR_interval(summary.data) SMR_interval(summary.data, method = "support") SMR_interval(summary.data, method = "wald")
summary.data = c(0.13707, 0.0235162, -0.0637257, 0.013774) SMR_interval(summary.data) SMR_interval(summary.data, method = "support") SMR_interval(summary.data, method = "wald")
Estimates scaling factors using the trimmed average of ratios of quantiles (TARQ) method
tarq(X, tau = 0.3)
tarq(X, tau = 0.3)
X |
a matrix of raw counts. Rows are for taxa (genes, transcripts) and columns for samples |
tau |
a numerical value in (0, 0.5). The upper |
Estimation of scaling factors for NGS read counts data is challenging. TARQ provides a quantile-based method for estimating scaling factors. It starts by ordering the raw counts sample by sample and constructs a reference sample from these ordered counts. To compute the scaling factor for a sample, ratios of its quantiles to those of the reference sample are formed. Zero ratios are removed. Then extreme ratios (too large or too small) are trimmed before taking average over the remaining ratios.
a vector of scaling factors. Normalized counts can be obtained by sweep(X, 2, scale.factors, FUN="/")
Kai Wang <[email protected]>
Wang, K. (2018) An Accurate Normalization Method for Next-Generation Sequencing Data. Submitted.
#data(throat.otu.tab) #data(throat.meta) #otu.tab = t(throat.otu.tab) #tarq(otu.tab, 0.3) ##### Use TARQ with DESeq2 #dds <- DESeqDataSetFromMatrix(countData = otu.tab, # colData = throat.meta, # design= ~ SmokingStatus) #sizeFactors(dds) <- tarq(otu.tab, 0.3) #dds <- DESeq(dds) #results(dds) # ###### Use TARQ with edgeR #cs <- colSums(otu.tab) #scale.factors <- tarq(otu.tab, 0.3) #tmp <- scale.factors/cs #norm.factors <- tmp/exp(mean(log(tmp))) #dgList <- DGEList(counts = otu.tab, genes=rownames(otu.tab), norm.factors = norm.factors) #designMat <- model.matrix(~ throat.meta$SmokingStatus) #dgList <- estimateGLMCommonDisp(dgList, design=designMat) #fit <- glmFit(dgList, designMat) #glmLRT(fit, coef=2)
#data(throat.otu.tab) #data(throat.meta) #otu.tab = t(throat.otu.tab) #tarq(otu.tab, 0.3) ##### Use TARQ with DESeq2 #dds <- DESeqDataSetFromMatrix(countData = otu.tab, # colData = throat.meta, # design= ~ SmokingStatus) #sizeFactors(dds) <- tarq(otu.tab, 0.3) #dds <- DESeq(dds) #results(dds) # ###### Use TARQ with edgeR #cs <- colSums(otu.tab) #scale.factors <- tarq(otu.tab, 0.3) #tmp <- scale.factors/cs #norm.factors <- tmp/exp(mean(log(tmp))) #dgList <- DGEList(counts = otu.tab, genes=rownames(otu.tab), norm.factors = norm.factors) #designMat <- model.matrix(~ throat.meta$SmokingStatus) #dgList <- estimateGLMCommonDisp(dgList, design=designMat) #fit <- glmFit(dgList, designMat) #glmLRT(fit, coef=2)
VSTF.test
performs tests on association between a rare variant and case-control status using a variance-stabilizing transformation.
VSTF.test(G, method = "Anscombe")
VSTF.test(G, method = "Anscombe")
G |
a |
method |
a character string indicating which transformation to use. One of |
Each test is named after the author(s) of the corresponding publication.
A list with class "test
" containing the following components:
* statistic the value of the test statistic.
* p.value the p-value for the test computed from a chi-square distribution with 1 df.
* method a character string indicting the test performed.
* data.name a character string giving the name of the data.
Kai Wang <[email protected]>
Anscombe, F. J. (1948) The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254.
Chanter, D. O. (1975). Modifications of the angular transformation. Journal of the Royal Statistical Society. Series B (Applied Statistics) 24(3), 354–359.
Freeman, M. F., Tukey, J. W. (1950) Transformations related to the angular and the square root. The Annals of Mathematical Statistics 21(4), 607–611.
Wang, K., Fingert, J. (2012) Statistical tests for detecting rare variants using variance-stabilizing transformations. Annals of Human Genetics. 76(5):402-409.
Zar, J.H. (1999) Biostatistical Analysis, 4th ed., New Jersey:Prentice-Hall, Inc.
## Example 1 of Li et al. (2010) G = rbind(c(14, 999), c(3, 1081)) VSTF.test(G) VSTF.test(G, method = "arcsine") VSTF.test(G, method = "Freeman-Tukey")
## Example 1 of Li et al. (2010) G = rbind(c(14, 999), c(3, 1081)) VSTF.test(G) VSTF.test(G, method = "arcsine") VSTF.test(G, method = "Freeman-Tukey")