Package 'jlst'

Title: Joint location-and-scale tests
Description: Joint location-and-scale tests for joint testing of mean (location) and variance (scale).
Authors: James Staley [aut, cre]
Maintainer: James Staley <[email protected]>
License: GPL-3
Version: 0.0.2
Built: 2024-12-30 03:06:24 UTC
Source: https://github.com/jrs95/jlst

Help Index


Joint location-and-scale test using Fisher's method

Description

jlsp performs the joint location-and-scale test using Fisher's method.

Usage

jlsp(y, x, covar = NULL, covar.var = FALSE, var.type = 1, x.sq = FALSE)

Arguments

y

vector of outcome values

x

vector of exposure values

covar

data.frame of covariates

covar.var

adjust the second stage (variance component) of the approach by the covariates

x.sq

include x-squared in the variance part of the model

type

type of test, where 1 = Breusch-Pagan variance test, and 2 = Brown-Forsythe variance test (default: 1)

Value

jlsp returns a list of results:

Q / F

the test statistic

DF

the degrees of freedom

P

the p-value

Author(s)

James Staley [email protected]

Examples

x <- rbinom(1000, 1, 0.5)
y <- 0.5 + 0.025 * x + rnorm(1000, 0, sqrt(0.005 * x)) + rnorm(1000, 0, 0.1)
jlsp(y, x, var.type = 2)

Joint location-and-scale test

Description

jlssc performs the joint location-and-scale score test.

Usage

jlssc(y, x, covar = NULL, type = 1, x.sq = FALSE, x.reg = TRUE)

Arguments

y

vector of outcome values

x

vector of exposure values

covar

data.frame of covariates

type

type of test, where 1 = Breusch-Pagan variance test, 2 = Brown-Forsythe variance test, 3 = Method of moments version of test 1, and 4 = Method of moments version of test 2] (default: 1)

x.sq

include x-squared in the model

x.reg

regress out the covariates from the exposure terms

Value

jlst returns a data.frame of results:

Q

the test statistic

DF

the degrees of freedom

P

the p-value

Author(s)

James Staley [email protected]

Examples

x <- rbinom(1000, 1, 0.5)
y <- 0.5 + 0.025 * x + rnorm(1000, 0, sqrt(0.005 * x)) + rnorm(1000, 0, 0.1)
jlssc(y, x)

Variability tests

Description

vartest performs variability tests by either the Breusch-Pagan or Brown-Forsythe methods.

Usage

vartest(y, x, covar = NULL, covar.var = FALSE, type = 1, x.sq = FALSE)

Arguments

y

vector of outcome values

x

vector of exposure values

covar

data.frame of covariates

covar.var

adjust the second stage (variance component) of the approach by the covariates

type

type of test, where 1 = Breusch-Pagan variance test, and 2 = Brown-Forsythe variance test (default: 1)

x.sq

include x-squared in the variance part of the model

Value

vartest returns a list of results:

coef

model coefficients from variance part of the model

test

data.frame of test results

  • F: the test statistic

  • DF: the degrees of freedom

  • P: the p-value

Author(s)

James Staley [email protected]

Examples

x <- rbinom(1000, 1, 0.5)
y <- 0.5 + 0.025 * x + rnorm(1000, 0, sqrt(0.005 * x)) + rnorm(1000, 0, 0.1)
vartest(y, x, type = 2)