Package: mrlocus (via r-universe)

September 26, 2024

Title MRLocus - Mendelian Randomization per locus Version 0.0.26 Maintainer Michael Love <michaelisaiahlove@gmail.com> Description Mendelian Randomization per locus, leveraging eQTL and GWAS summary statistics, for estimation of gene-to-trait effect size and dispersion. URL https://github.com/thelovelab/mrlocus License GPL (>=2) **Encoding** UTF-8 LazyData true Biarch true **Depends** R (>= 3.4.0) **Imports** methods, Rcpp ($\geq 0.12.0$), rstan ($\geq 2.18.1$), rstantools (\geq 2.0.0), matrixStats, MASS Suggests mclust, pheatmap, gridExtra, knitr, rmarkdown, testthat **LinkingTo** BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) SystemRequirements GNU make RoxygenNote 7.2.3 VignetteBuilder knitr, rmarkdown Repository https://mrcieu.r-universe.dev RemoteUrl https://github.com/thelovelab/mrlocus RemoteRef HEAD RemoteSha d3dd5068a107fc9891f100ada4017207453af08f

Contents

mrlocus-package		•		•	•	•				•	•		•	•				•	•	•	•	•		•	•				•				2
collapseHighCorSNPs	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		3

mrlocus-package

14	4
trimClusters	2
priorCheck 1	1
plotMrlocus	0
plotInitEstimates	0
normalizedAllelicSpread	9
makeSimDataForMrlocus	8
flipAllelesAndGather	7
fitSlope	6
fitBetaColoc	5
extractForSlope	4

Index

mrlocus-package

MRLocus - see this page for typical order of functions

Description

Mendelian Randomization per locus, leveraging eQTL and GWAS summary statistics, for estimation of gene-to-trait effect size and dispersion.

The main functions (in order of typical usage) are:

- collapseHighCorSNPs collapse high correlation SNPs
- flipAllelesAndGather flip alleles and gather for colocalization
- fitBetaColoc perform colocalization across signal clusters
- extractForSlope extract one SNP per signal cluster for MR analysis
- fitSlope perform MR analysis to estimate gene-to-trait effect
- plotMrlocus plot estimates from MR analysis
- priorCheck perform prior predictive checks

References

Anqi Zhu*, Nana Matoba*, Emmaleigh Wilson, Amanda L. Tapia, Yun Li, Joseph G. Ibrahim, Jason L. Stein, Michael I. Love. MRLocus: identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity. (2020) bioRxiv https://doi.org/10.1101/2020. 08.14.250720

Stan Development Team (2019). RStan: the R interface to Stan. R package version 2.19.2. https://mc-stan.org

collapseHighCorSNPs Collapse high correlation SNPs

Description

A helper function to collapse sets of highly correlated SNPs within signal clusters. This is recommended to run before flipAllelesAndGather, and before fitBetaColoc.

Usage

```
collapseHighCorSNPs(
   sum_stat,
   ld_mat,
   ld_mat2 = NULL,
   threshold = 0.95,
   score = NULL,
   plot = TRUE,
   snp_id = NULL
)
```

Arguments

sum_stat	list of summary statistic tables, which is a list over signal clusters. Each element of the list should be a data.frame describing the eQTL and GWAS summary statistics. The only column in sum_stat that is used by the function is score (optional)
ld_mat	list of LD matrices across signal clusters
ld_mat2	optional second list of LD matrices (for different populations). it will be returned alongside the first ld_mat, which is used for the collapsing. The second list of LD matrices is just subset to the same set of SNPs as the first
threshold	threshold on absolute value of correlation for collapsing, e.g. will collapse if SNPs are more correlated (or anti-correlated) than this amount
score	name of a column of sum_stat data.frames with a score, such that collapsing will choose the highest score SNP per collapsed cluster. Otherwise, if set to NULL, the first SNP will be used
plot	logical, draw a before/after grid of plots
snp_id	name of SNP id column in sum_stat, if specified will output a column collapsed that lists which SNP ids are represented in the output (i.e. which highly correlated SNPs were collapsed).

Value

list with subset ld_mat and sum_stat lists (and ld_mat2 if provided)

```
extractForSlope
```

Description

Extracts one or more SNPs from each signal cluster based on the posterior estimate of the effect size for A (largest effect size in the positive direction). After running this function, it is recommended to use trimClusters to remove signal clusters that are too highly correlated.

Usage

```
extractForSlope(
  res,
  niter = 0,
  plot = TRUE,
  label = "Effect size of",
  a = "eQTL",
  b = "GWAS"
)
```

Arguments

res	list with the following named elements:
	 beta_hat_a - list of point estimates of coefficients for A from colocaliza- tion
	• beta_hat_b - " " for B
	 sd_a - list of sampling SD for beta_hat_a (in practice original SE are provided here)
	 sd_b - " " for beta_hat_b " "
	• alleles (optional) list of data.frame with allele information
niter	number of iterations of EM to run for mclust, if set to 0, only the maximum variant (in terms of A effect size) per signal cluster is output. Default is to not run clustering, but to take the SNP with the largest effect size in A (in the positive direction)
plot	logical, draw a before after of which variants will be included for slope estimation
label	what preceeds a and b in the x- and y-axis labels
а	name of A experiment
b	name of B experiment

Value

list of vectors of the first four arguments, collapsed now across signal clusters, representing variants with positive effect on A. So the null variants have been removed (and any variants per cluster that indicated a negative effect on A). If alleles data.frames were included in the input, they will also be passed through as a single data.frame with the selected SNPs per signal cluster

fitBetaColoc

Description

Implements the MRLocus colocalization step, in which summary statistics from A and B studies are used in a generative model, with a horseshoe prior on the latent true effect sizes. Posterior effect sizes and posterior SD are returned, although in pratice we use the original SE in the subsequent fitSlope model. See Supplementary Methods of the MRLocus manuscript.

Usage

```
fitBetaColoc(beta_hat_a, beta_hat_b, se_a, se_b, Sigma_a, Sigma_b, ...)
```

Arguments

beta_hat_a	vector of estimated coefficients for A
beta_hat_b	" " for B
se_a	vector of standard errors for beta_hat_a
se_b	" " for beta_hat_b
Sigma_a	correlation matrix of SNPs for A
Sigma_b	" " for B (this could be different for different LD matrix)
	further arguments passed to rstan::sampling

Value

a list with the following elements:

- stanfit object
- posterior means for estimated coefficients for A and B
- · posterior standard deviations for A and B
- · scaling factors for A and B

Two important notes: (1) in MRLocus manuscript, original SE are used instead of posterior SD in the slope fitting step, (2) the posterior means and SD for estimated coefficients are appropriately scaled, while the results from the stanfit object are not scaled. In order to scale the results from the stanfit object, scale_a and scale_b should be divided out from both coefficients and SDs (see Supplementary Methods).

References

Anqi Zhu*, Nana Matoba*, Emma P. Wilson, Amanda L. Tapia, Yun Li, Joseph G. Ibrahim, Jason L. Stein, Michael I. Love. MRLocus: identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity. (2021) PLOS Genetics https://doi.org/10.1371/journal. pgen.1009455

fitSlope

Description

Implements the MRLocus slope fitting step, in which the estimated coefficients and their original SE are used to determine the mediation slope (alpha), and the dispersion of individual signal clusters around the slope (sigma). This function follows the colocalization step fitBetaColoc and extractForSlope. The output fitSlope can be visualized with plotMrlocus. For details on the model, see Supplementary Methods of the MRLocus manuscript. See vignette for example of model interpretation.

Usage

```
fitSlope(
  res,
  sd_beta = NULL,
  mu_alpha = NULL,
  sd_alpha = NULL,
  sd_sigma = NULL,
  ...
)
```

Arguments

res	list with the following named elements:
	 beta_hat_a - point estimates of coefficients for A from colocalization
	• beta_hat_b - " " for B
	 sd_a - sampling SD for beta_hat_a (in practice original SE are provided
	here)
	sd_b - " " for beta_hat_b " "
	• alleles (optional) data.frame with allele information
sd_beta	prior SD for beta A (default value will be derived from data)
mu_alpha	prior mean for alpha (default value of 0)
sd_alpha	prior SD for alpha (default value will be derived from data)
sd_sigma	prior SD for sigma (default value of 1)
	further arguments passed to rstan::sampling

Details

Note that since v0.0.26, the default prior mean for alpha is 0, whereas in the paper it was derived from the data.

Note that if summary statistics for only one SNP are provided a warning will be printed (this is not a recommended use of MRLocus) and a parametric simulation is used to estimate the slope, instead of the Bayesian model.

Value

list with the following elements: stanfit object, original estimated coefficients and standard deviations, as well as the alleles data.frame (if it was provided)

References

Anqi Zhu*, Nana Matoba*, Emma P. Wilson, Amanda L. Tapia, Yun Li, Joseph G. Ibrahim, Jason L. Stein, Michael I. Love. MRLocus: identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity. (2021) PLOS Genetics https://doi.org/10.1371/journal.pgen.1009455

flipAllelesAndGather Flip alleles and gather results into lists

Description

A helper function to flip alleles from eQTL and GWAS datasets, such that they agree on the effect allele, that the SNPs in a signal cluster are in postive correlation with the index SNP (eQTL), and that the effect allele is coded such that it is the expression increasing allele. This is recommended to run after collapseHighCorSNPs, and before fitBetaColoc.

Usage

```
flipAllelesAndGather(
  sum_stat,
  ld_mat,
  ld_mat2 = NULL,
  a,
  b,
  ref,
  eff,
  beta,
  se,
  a2_plink,
  a2_plink_mat2 = NULL,
  snp_id,
  sep,
  ab_last = TRUE,
  alleles_same = FALSE,
 plot = TRUE
)
```

Arguments

```
sum_stat
```

list of summary statistic tables. A list over signal clusters, where each element is a data.frame with summary statistics from eQTL and GWAS datasets. The names of the columns are specified by arguments below (e.g. a, b, ref, eff, etc.)

ld_mat	list of LD matrices
ld_mat2	optional second list of LD matrices (for different populations). it will be returned alongside the first ld_mat, which is used for the allele flipping. the second list of LD matrices is just flipped in the same way
а	name of A in columns of sum_stat ("eQTL")
b	name of B ("GWAS")
ref	name of reference allele
eff	name of effect allele
beta	name of estimated coefficient
se	name of standard error
a2_plink	name of the column representing the a2 allele (reference allele) according to plink. the default for plink v1.9 and earlier was to reset a2 to the major allele, unless an optional flag was used. in plink v2.0 and onward, one should check to see which allele is used as reference for calculating the LD matrix. If plink was not used, this argument should just point to the reference allele that was used for LD calculation
a2_plink_mat2	name of the column representing the a2 allele for the second LD matrix, ld_mat2 (needed only if ld_mat2 was specified)
snp_id	name of SNP id
sep	character separator in column names that involve A/B
ab_last	logical, A/B descriptor is last in column names (e.g. "beta_eqtl", "se_eqtl"))
alleles_same	logical, A/B/LD matrix alleles are identical
plot	logical, draw a scatterplot of the flipped betas

Value

list with estimated coefficients, standard errors, LD matrix, and alleles data.frame

makeSimDataForMrlocus Make simple simulated summary data

Description

Make simple simulated summary data

Usage

```
makeSimDataForMrlocus(
    nsnp = c(7:10),
    idx = 5,
    alpha = 0.5,
    sigma = 0.05,
    betas = 1:4,
    se = 0.25,
    n_mult = 1
)
```

Arguments

nsnp	number of SNPs per signal cluster
idx	the causal SNP (same per cluster for simplicity)
alpha	the true slope of B coefficients over A coefficients
sigma	the SD of true B coefficients around the conditional values given true A coefficients
betas	the true A coefficients
se	the standard errors for betas
n_mult	how many more samples the B study has

Value

a list of beta_hat_a, beta_hat_b, se_a, se_b, Sigma_a, Sigma_b (themselves lists), and alleles (a list of data.frames each with id, ref, eff for the SNP id, reference allele, and effect allele).

normalizedAllelicSpread

Estimate the normalized allelic spread

Description

A useful statistic is to normalize the estimate of sigma from estimateSlope, the dispersion, with respect to typical mediated effect sizes. This helps in particular to compare sigma across different GWAS traits, which may have different scale.

Usage

```
normalizedAllelicSpread(fit)
```

Arguments

fit a list output by estimateSlope

Details

We define the normalized allelic spread as an estimate of sigma divided by something called the "mean mediated effect". The mean mediated effect is defined as the mean QTL effect size multiplied by the estimate of the slope. So in the plotMrlocus plot, the mean mediated effect is found by taking the mean among the spread of points on the x-axis, then going up to the linear trend. This function outputs the normalized allelic spread which is again: sigma / mean mediated effect.

Value

the normalized allelic spread, a numeric

plotInitEstimates Plot initial estimates over signal clusters

Description

Plot initial estimates over signal clusters

Usage

```
plotInitEstimates(x, label = "Effect size of", a = "eQTL", b = "GWAS")
```

Arguments

Х	list of signal clusters data with beta_hat_a and beta_hat_b lists
label	what preceeds a and b in the x- and y-axis labels
а	name of A experiment
b	name of B experiment

plotMrlocus	Plot estimates from MRLocus slope fitting step

Description

Plot estimates from MRLocus slope fitting step

Usage

```
plotMrlocus(
  res,
  q = c(0.1, 0.9),
  sigma_mult = 1.28,
 label = "Effect size of",
  a = "eQTL",
  b = "GWAS",
 xlim = NULL,
 ylim = NULL,
 legend = TRUE,
 digits = 3,
  col_slope = "blue",
  col_band = rgb(0, 0, 1, 0.1),
 col_dashed = rgb(0, 0, 1, 0.5),
  . . .
)
```

priorCheck

Arguments

the output from fitSlope
the quantiles of the posterior to use for drawing the uncertainty on the slope. The default is an 80 percent interval
 multiplier on estimate of sigma for drawing the dispersion band (e.g. qnorm(12/2) ~= 1.28 should include 80 percent of coefficient pairs)
what preceeds a and b in the x- and y-axis labels
name of A experiment
name of B experiment
xlim (if NULL will be set automatically)
ylim (if NULL will be set automatically)
logical, whether to show a legend
number of digits to show in legend
the color of the slope (alpha)
the color of the band
the color of the dashed lines
arguments passed to plot

priorCheck

Basic prior checks on MRLocus slope fit

Description

This function provides some basic checks on the strength of the prior in the MRLocus slope fitting Bayesian model. It is not desired that the prior overly influences the posterior inference.

Usage

```
priorCheck(res, n = 200, plot = TRUE, type = 1)
```

Arguments

res	output of fitSlope
n	integer, for the plot how many data points to simulate
plot	logical, whether to draw the plots
type	integer, return type. by default (type=1) the function returns a table. By setting type=2, the prior predictive draws for alpha, sigma, beta_a, and beta_b are returned. See Details regarding the simulated draws for beta_a

Details

The posterior-over-prior SD ratio is calculated and returned in a table, and two plots are made that show parameters drawn from the estimated priors (in MRLocus, two priors are estimated from the data - the SD of beta, the instrument effects, and the SD of alpha, the slope). Alternatively, the prior predictive draws themselves can be returned instead of the table (by setting type=2).

If the posterior-over-prior SD ratio is close to 1 for either alpha or sigma, this indicates undesirable influence of the prior on the posterior inference. For comparison, some consider a posterior-prior SD ratio of 0.1 or higher to be described as an 'informative prior' (from Stan wiki on prior choice recommendations). We note that an 'informative prior' alone is not problematic for MRLocus, and the prior estimation steps have been designed to be informative as to reasonable values for some of the prior parameters of alpha and sigma.

The plots show parameters generated from the prior and the model. The simulated true values of beta_a and beta_b are drawn as black circles (summary statistics would then be drawn from these according to the reported SEs, but this step of the model is omitted in this plot). The two plots differ in that the second plot uses fixed alpha (fixed to the prior mean) instead of drawing it from the model (so that the prior for sigma can better be visualized). The fitted estimates of beta_a and beta_b from the colocalization step are shown as blue X's. One exception where parameters are not drawn from the prior is: beta_a values are instead drawn as uniform between 0 and 1.1x the maximum value of beta_hat_a from the colocalization step (for ease of visualization).

Value

a data.frame with information about prior and posterior SD for alpha and sigma, and two plots are generated (see Details)

trimClusters

Trim signal clusters based on pairwise r2

Description

This function identifies the clusters to remove such that all remaining clusters have pairwise r2 below a given threshold. It is assumed the r2 matrix is ordered such that the first row/column corresponds to the most significant signal cluster, and so on. trimClusters either removes clusters correlated with the most significant cluster (first) and proceeds downwards, or removes clusters with correlation to more significant clusters and proceeds upwards. Moving downward tends to preserve more clusters. The function stops once the pairwise r2 are all below the threshold. It is recommended to run this function after extractForSlope.

Usage

trimClusters(r2, r2_threshold, direction = "down")

Arguments

r2	the matrix of r2 values
r2_threshold	the threshold on r2
direction	to proceed from the first cluster down ("down") or from the last cluster up ("up")

12

trimClusters

Value

a numeric vector (possibly length 0) of the signal clusters that should be trimmed/removed

Index

collapseHighCorSNPs, 2, 3, 7

extractForSlope, 2, 4, 6, 12

fitBetaColoc, 2, 3, 5, 6, 7 fitSlope, 2, 5, 6, 11 flipAllelesAndGather, 2, 3, 7

makeSimDataForMrlocus, 8
mrlocus(mrlocus-package), 2
mrlocus-package, 2

normalizedAllelicSpread, 9

plotInitEstimates, 10
plotMrlocus, 2, 6, 10
priorCheck, 2, 11

trimClusters, 4, 12