Title: | One Sample Mendelian Randomization and Instrumental Variable Analyses |
---|---|
Description: | Useful functions for one-sample (individual level data) Mendelian randomization and instrumental variable analyses. The package includes implementations of; the Sanderson and Windmeijer (2016) <doi:10.1016/j.jeconom.2015.06.004> conditional F-statistic, the multiplicative structural mean model Hernán and Robins (2006) <doi:10.1097/01.ede.0000222409.00878.37>, and two-stage predictor substitution and two-stage residual inclusion estimators explained by Terza et al. (2008) <doi:10.1016/j.jhealeco.2007.09.009>. |
Authors: | Tom Palmer [aut, cre] , Wes Spiller [aut] , Eleanor Sanderson [aut] |
Maintainer: | Tom Palmer <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.1.5.9000 |
Built: | 2025-01-06 09:30:07 UTC |
Source: | https://github.com/remlapmot/OneSampleMR |
Useful functions for one-sample (individual level data) Mendelian randomization and instrumental variable analyses. The package includes implementations of; the Sanderson and Windmeijer (2016) doi:10.1016/j.jeconom.2015.06.004 conditional F-statistic, the multiplicative structural mean model Hernán and Robins (2006) doi:10.1097/01.ede.0000222409.00878.37, and two-stage predictor substitution and two-stage residual inclusion estimators explained by Terza et al. (2008) doi:10.1016/j.jhealeco.2007.09.009.
Maintainer: Tom Palmer [email protected] (ORCID)
Authors:
Wes Spiller [email protected] (ORCID)
Eleanor Sanderson [email protected] (ORCID)
Useful links:
Report bugs at https://github.com/remlapmot/OneSampleMR/issues/
asmm
is not a function. This helpfile is to note that the additive structural mean model (ASMM)
is simply fit with a linear IV estimator, such as available in ivreg::ivreg()
.
For a binary outcome the ASMM estimates a causal risk difference.
Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments. Statistical Science, 2015, 30, 1, 96-117. doi:10.1214/14-STS503
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173, 12, 1392-1403. doi:10.1093/aje/kwr026
Robins JM. The analysis of randomised and nonrandomised AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.). 1989. 113–159. US Public Health Service, National Center for Health Services Research, Washington, DC.
# Single instrument example # Data generation from the example in the ivtools ivglm() helpfile set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat1 <- data.frame(Z, X, Y) fit1 <- ivreg::ivreg(Y ~ X | Z, data = dat1) summary(fit1) # Multiple instrument example set.seed(123456) n <- 1000 psi0 <- 0.5 G1 <- rbinom(n, 2, 0.5) G2 <- rbinom(n, 2, 0.3) G3 <- rbinom(n, 2, 0.4) U <- runif(n) pX <- plogis(0.7*G1 + G2 - G3 + U) X <- rbinom(n, 1, pX) pY <- plogis(-2 + psi0*X + U) Y <- rbinom(n, 1, pY) dat2 <- data.frame(G1, G2, G3, X, Y) fit2 <- ivreg::ivreg(Y ~ X | G1 + G2 + G3, data = dat2) summary(fit2)
# Single instrument example # Data generation from the example in the ivtools ivglm() helpfile set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat1 <- data.frame(Z, X, Y) fit1 <- ivreg::ivreg(Y ~ X | Z, data = dat1) summary(fit1) # Multiple instrument example set.seed(123456) n <- 1000 psi0 <- 0.5 G1 <- rbinom(n, 2, 0.5) G2 <- rbinom(n, 2, 0.3) G3 <- rbinom(n, 2, 0.4) U <- runif(n) pX <- plogis(0.7*G1 + G2 - G3 + U) X <- rbinom(n, 1, pX) pY <- plogis(-2 + psi0*X + U) Y <- rbinom(n, 1, pY) dat2 <- data.frame(G1, G2, G3, X, Y) fit2 <- ivreg::ivreg(Y ~ X | G1 + G2 + G3, data = dat2) summary(fit2)
fsw
calculates the conditional F-statistic of
Sanderson and Windmeijer (2016) for each endogenous variable
in the model.
fsw(object) ## S3 method for class 'ivreg' fsw(object)
fsw(object) ## S3 method for class 'ivreg' fsw(object)
object |
An object of class |
An object of class "fsw"
with the following elements:
matrix with columns for the conditional F-statistics, degrees of freedom, residual degrees of freedom, and p-value. 1 row per endogenous variable.
a character vector of the variable names of the endogenous variables.
the number of endogenous variables.
the sample size used for the fitted model.
Sanderson E and Windmeijer F. A weak instrument F-test in linear IV models with multiple endogenous variables. Journal of Econometrics, 2016, 190, 2, 212-221, doi:10.1016/j.jeconom.2015.06.004.
require(ivreg) set.seed(12345) n <- 4000 z1 <- rnorm(n) z2 <- rnorm(n) w1 <- rnorm(n) w2 <- rnorm(n) u <- rnorm(n) x1 <- z1 + z2 + 0.2*u + 0.1*w1 + rnorm(n) x2 <- z1 + 0.94*z2 - 0.3*u + 0.1*w2 + rnorm(n) y <- x1 + x2 + w1 + w2 + u dat <- data.frame(w1, w2, x1, x2, y, z1, z2) mod <- ivreg::ivreg(y ~ x1 + x2 + w1 + w2 | z1 + z2 + w1 + w2, data = dat) fsw(mod)
require(ivreg) set.seed(12345) n <- 4000 z1 <- rnorm(n) z2 <- rnorm(n) w1 <- rnorm(n) w2 <- rnorm(n) u <- rnorm(n) x1 <- z1 + z2 + 0.2*u + 0.1*w1 + rnorm(n) x2 <- z1 + 0.94*z2 - 0.3*u + 0.1*w2 + rnorm(n) y <- x1 + x2 + w1 + w2 + u dat <- data.frame(w1, w2, x1, x2, y, z1, z2) mod <- ivreg::ivreg(y ~ x1 + x2 + w1 + w2 | z1 + z2 + w1 + w2, data = dat) fsw(mod)
Function providing several methods to estimate the multiplicative structural mean model (MSMM) of Robins (1989).
msmm( formula, instruments, data, subset, na.action, contrasts = NULL, estmethod = c("gmm", "gmmalt", "tsls", "tslsalt"), t0 = NULL, ... )
msmm( formula, instruments, data, subset, na.action, contrasts = NULL, estmethod = c("gmm", "gmmalt", "tsls", "tslsalt"), t0 = NULL, ... )
formula , instruments
|
formula specification(s) of the regression
relationship and the instruments. Either |
data |
an optional data frame containing the variables in the model.
By default the variables are taken from the environment of the
|
subset |
an optional vector specifying a subset of observations to be used in fitting the model. |
na.action |
a function that indicates what should happen when the data
contain |
contrasts |
an optional list. See the |
estmethod |
Estimation method, please use one of
|
t0 |
A vector of starting values for the gmm optimizer. This should have length equal to the number of exposures plus 1. |
... |
further arguments passed to or from other methods. |
Function providing several methods to estimate the multiplicative structural mean model (MSMM) of Robins (1989). These are the methods described in Clarke et al. (2015), most notably generalised method of moments (GMM) estimation of the MSMM.
An equivalent estimator to the MSMM was proposed in Econometrics by Mullahy (1997) and
then discussed in several articles by Windmeijer (1997, 2002) and Cameron
and Trivedi (2013). This was implemented in the user-written Stata command ivpois
(Nichols, 2007) and then implemented in official Stata in the ivpoisson
command (StataCorp., 2013).
An object of class "msmm"
. A list with the following items:
fit |
The object from either a |
crrci |
The causal risk ratio/s and it corresponding 95% confidence interval limits. |
estmethod |
The specified |
If estmethod
is "tsls"
, "gmm"
, or "gmmalt"
:
ey0ci |
The estimate of the treatment/exposure free potential outcome and its 95% confidence interval limits. |
If estmethod
is "tsls"
or "tslsalt"
:
stage1 |
An object containing the first stage regression from an
|
Cameron AC, Trivedi PK. Regression analysis of count data. 2nd ed. 2013. New York, Cambridge University Press. ISBN:1107667275
Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments. Statistical Science, 2015, 30, 1, 96-117. doi:10.1214/14-STS503
Hernán and Robins. Instruments for causal inference: An Epidemiologist's dream? Epidemiology, 2006, 17, 360-372. doi:10.1097/01.ede.0000222409.00878.37
Mullahy J. Instrumental-variable estimation of count data models: applications to models of cigarette smoking and behavior. The Review of Economics and Statistics. 1997, 79, 4, 586-593. doi:10.1162/003465397557169
Nichols A. ivpois: Stata module for IV/GMM Poisson regression. 2007. url
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173, 12, 1392-1403. doi:10.1093/aje/kwr026
Robins JM. The analysis of randomised and nonrandomised AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.). 1989. 113–159. US Public Health Service, National Center for Health Services Research, Washington, DC.
StataCorp. Stata Base Reference Manual. Release 13. ivpoisson - Poisson model with continuous endogenous covariates. 2013. url
Windmeijer FAG, Santos Silva JMC. Endogeneity in Count Data Models: An Application to Demand for Health Care. Journal of Applied Econometrics. 1997, 12, 3, 281-294. doi:10/fdkh4n
Windmeijer, F. ExpEnd, A Gauss programme for non-linear GMM estimation of EXPonential models with ENDogenous regressors for cross section and panel data. CEMMAP working paper CWP14/02. 2002. url
# Single instrument example # Data generation from the example in the ivtools ivglm() helpfile set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) fit <- msmm(Y ~ X | Z, data = dat) summary(fit) # Multiple instrument example set.seed(123456) n <- 1000 psi0 <- 0.5 G1 <- rbinom(n, 2, 0.5) G2 <- rbinom(n, 2, 0.3) G3 <- rbinom(n, 2, 0.4) U <- runif(n) pX <- plogis(0.7*G1 + G2 - G3 + U) X <- rbinom(n, 1, pX) pY <- plogis(-2 + psi0*X + U) Y <- rbinom(n, 1, pY) dat2 <- data.frame(G1, G2, G3, X, Y) fit2 <- msmm(Y ~ X | G1 + G2 + G3, data = dat2) summary(fit2)
# Single instrument example # Data generation from the example in the ivtools ivglm() helpfile set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) fit <- msmm(Y ~ X | Z, data = dat) summary(fit) # Multiple instrument example set.seed(123456) n <- 1000 psi0 <- 0.5 G1 <- rbinom(n, 2, 0.5) G2 <- rbinom(n, 2, 0.3) G3 <- rbinom(n, 2, 0.4) U <- runif(n) pX <- plogis(0.7*G1 + G2 - G3 + U) X <- rbinom(n, 1, pX) pY <- plogis(-2 + psi0*X + U) Y <- rbinom(n, 1, pY) dat2 <- data.frame(G1, G2, G3, X, Y) fit2 <- msmm(Y ~ X | G1 + G2 + G3, data = dat2) summary(fit2)
Summarizing MSMM Fits
## S3 method for class 'msmm' summary(object, ...) ## S3 method for class 'msmm' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.msmm' print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'msmm' summary(object, ...) ## S3 method for class 'msmm' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.msmm' print(x, digits = max(3, getOption("digits") - 3), ...)
object |
an object of class |
... |
further arguments passed to or from other methods. S3 summary and print methods for objects of class |
x |
an object of class |
digits |
the number of significant digits to use when printing. |
summary.msmm()
returns an object of class "summary.msmm"
. A list with the following elements:
smry |
An object from a call to either |
object |
The object of class |
# For examples see the examples at the bottom of help('msmm')
# For examples see the examples at the bottom of help('msmm')
S3 print and summary methods for objects of
class "tsps"
and print method for objects of
class "summary.tsps"
.
## S3 method for class 'tsps' summary(object, ...) ## S3 method for class 'tsps' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.tsps' print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'tsps' summary(object, ...) ## S3 method for class 'tsps' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.tsps' print(x, digits = max(3, getOption("digits") - 3), ...)
object |
an object of class |
... |
further arguments passed to or from other methods. |
x |
an object of class |
digits |
the number of significant digits to use when printing. |
summary.tsps()
returns an object of class "summary.tsps"
. A list with the following elements:
smry |
An object from a call to |
object |
The object of class |
# See the examples at the bottom of help('tsps')
# See the examples at the bottom of help('tsps')
S3 print and summary methods for objects of
class "tsri"
and print method for objects of
class "summary.tsri"
.
## S3 method for class 'tsri' summary(object, ...) ## S3 method for class 'tsri' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.tsri' print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'tsri' summary(object, ...) ## S3 method for class 'tsri' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'summary.tsri' print(x, digits = max(3, getOption("digits") - 3), ...)
object |
an object of class |
... |
further arguments passed to or from other methods. |
x |
an object of class |
digits |
the number of significant digits to use when printing. |
summary.tsri()
returns an object of class "summary.tsri"
. A list with the following elements:
smry |
An object from a call to |
object |
The object of class |
# See the examples at the bottom of help('tsri')
# See the examples at the bottom of help('tsri')
Terza et al. (2008) give an excellent description of TSPS estimators. They proceed by fitting a first stage model of the exposure regressed upon the instruments (and possibly any measured confounders). From this the predicted values of the exposure are obtained. A second stage model is then fitted of the outcome regressed upon the predicted values of the exposure (and possibly measured confounders).
tsps( formula, instruments, data, subset, na.action, contrasts = NULL, t0 = NULL, link = "identity", ... )
tsps( formula, instruments, data, subset, na.action, contrasts = NULL, t0 = NULL, link = "identity", ... )
formula , instruments
|
formula specification(s) of the regression
relationship and the instruments. Either |
data |
an optional data frame containing the variables in the model.
By default the variables are taken from the environment of the
|
subset |
an optional vector specifying a subset of observations to be used in fitting the model. |
na.action |
a function that indicates what should happen when the data
contain |
contrasts |
an optional list. See the |
t0 |
A vector of starting values for the gmm optimizer. This should have length equal to the number of exposures plus 1. |
link |
character; one of |
... |
further arguments passed to or from other methods. |
tsps()
performs GMM estimation to ensure appropriate standard errors
on its estimates similar to the approach described in Clarke et al. (2015).
An object of class "tsps"
with the following elements
the fitted object of class "gmm"
from the call to gmm::gmm()
.
a matrix of the estimates with their corresponding confidence interval limits.
a character vector containing the specificed link function.
Burgess S, CRP CHD Genetics Collaboration. Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model. Statistics in Medicine, 2013, 32, 27, 4726-4747. doi:10.1002/sim.5871
Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments. Statistical Science, 2015, 30, 1, 96-117. doi:10.1214/14-STS503
Dukes O, Vansteelandt S. A note on G-estimation of causal risk ratios. American Journal of Epidemiology, 2018, 187, 5, 1079-1084. doi:10.1093/aje/kwx347
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173, 12, 1392-1403. doi:10.1093/aje/kwr026
Terza JV, Basu A, Rathouz PJ. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. Journal of Health Economics, 2008, 27, 3, 531-543. doi:10.1016/j.jhealeco.2007.09.009
# Two-stage predictor substitution estimator # with second stage logistic regression set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) tspslogitfit <- tsps(Y ~ X | Z , data = dat, link = "logit") summary(tspslogitfit)
# Two-stage predictor substitution estimator # with second stage logistic regression set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) tspslogitfit <- tsps(Y ~ X | Z , data = dat, link = "logit") summary(tspslogitfit)
An excellent description of TSRI estimators is given by Terza et al. (2008). TSRI estimators proceed by fitting a first stage model of the exposure regressed upon the instruments (and possibly any measured confounders). From this the first stage residuals are estimated. A second stage model is then fitted of the outcome regressed upon the exposure and first stage residuals (and possibly measured confounders).
tsri( formula, instruments, data, subset, na.action, contrasts = NULL, t0 = NULL, link = "identity", ... )
tsri( formula, instruments, data, subset, na.action, contrasts = NULL, t0 = NULL, link = "identity", ... )
formula , instruments
|
formula specification(s) of the regression
relationship and the instruments. Either |
data |
an optional data frame containing the variables in the model.
By default the variables are taken from the environment of the
|
subset |
an optional vector specifying a subset of observations to be used in fitting the model. |
na.action |
a function that indicates what should happen when the data
contain |
contrasts |
an optional list. See the |
t0 |
A vector of starting values for the gmm optimizer. This should have length equal to the number of exposures plus 1. |
link |
character; one of |
... |
further arguments passed to or from other methods. |
TSRI estimators are sometimes described as a special case of control function estimators.
tsri()
performs GMM estimation to ensure appropriate standard errors
on its estimates similar to that described that described by
Clarke et al. (2015). Terza (2017) described an alternative approach.
An object of class "tsri"
with the following elements
the fitted object of class "gmm"
from the call to gmm::gmm()
.
a matrix of the estimates with their corresponding confidence interval limits.
a character vector containing the specificed link function.
Bowden J, Vansteelandt S. Mendelian randomization analysis of case-control data using structural mean models. Statistics in Medicine, 2011, 30, 6, 678-694. doi:10.1002/sim.4138
Clarke PS, Palmer TM, Windmeijer F. Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments. Statistical Science, 2015, 30, 1, 96-117. doi:10.1214/14-STS503
Dukes O, Vansteelandt S. A note on G-estimation of causal risk ratios. American Journal of Epidemiology, 2018, 187, 5, 1079-1084. doi:10.1093/aje/kwx347
Palmer T, Thompson JR, Tobin MD, Sheehan NA, Burton PR. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. International Journal of Epidemiology, 2008, 37, 5, 1161-1168. doi:10.1093/ije/dyn080
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology, 2011, 173, 12, 1392-1403. doi:10.1093/aje/kwr026
Terza JV, Basu A, Rathouz PJ. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. Journal of Health Economics, 2008, 27, 3, 531-543. doi:10.1016/j.jhealeco.2007.09.009
Terza JV. Two-stage residual inclusion estimation: A practitioners guide to Stata implementation. The Stata Journal, 2017, 17, 4, 916-938. doi:10.1177/1536867X1801700409
# Two-stage residual inclusion estimator # with second stage logistic regression set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) tsrilogitfit <- tsri(Y ~ X | Z , data = dat, link = "logit") summary(tsrilogitfit)
# Two-stage residual inclusion estimator # with second stage logistic regression set.seed(9) n <- 1000 psi0 <- 0.5 Z <- rbinom(n, 1, 0.5) X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z)) m0 <- plogis(1 + 0.8*X - 0.39*Z) Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0)))) dat <- data.frame(Z, X, Y) tsrilogitfit <- tsri(Y ~ X | Z , data = dat, link = "logit") summary(tsrilogitfit)