Package: MRPC 3.1.0

Audrey Fu

MRPC: PC Algorithm with the Principle of Mendelian Randomization

A PC Algorithm with the Principle of Mendelian Randomization. This package implements the MRPC (PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also contains functions to simulate data under a certain topology, to visualize a graph in different ways, and to compare graphs and quantify the differences. See Badsha and Fu (2019) <doi:10.3389/fgene.2019.00460>,Badsha, Martin and Fu (2021) <doi:10.3389/fgene.2021.651812>.

Authors:Md Bahadur Badsha [aut,cre],Evan A Martin [ctb] and Audrey Qiuyan Fu [aut]

MRPC_3.1.0.tar.gz
MRPC_3.1.0.zip(r-4.5)MRPC_3.1.0.zip(r-4.4)
MRPC_3.1.0.tgz(r-4.4-any)
MRPC_3.1.0.tar.gz(r-4.5-noble)MRPC_3.1.0.tar.gz(r-4.4-noble)
MRPC_3.1.0.tgz(r-4.4-emscripten)
MRPC.pdf |MRPC.html
MRPC/json (API)

# Install 'MRPC' in R:
install.packages('MRPC', repos = c('https://mrcieu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/audreyqyfu/mrpc/issues

Datasets:

On CRAN:

4.68 score 8 stars 20 scripts 318 downloads 2 mentions 25 exports 169 dependencies

Last updated 3 years agofrom:6b9385db8a. Checks:OK: 3 WARNING: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winNOTENov 08 2024
R-4.5-linuxWARNINGNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024

Exports:AdjustMatrixaSHDCompareMethodsNodeOrderingCompareMethodsVStructureCutModulesEdgeOrientationemptyIdentifyAssociatedPCsModiSkeletonmpinvMRPCplotPlotDendrogramPlotGraphWithModulesRecallPrecisionRobustCorseqDiffSeqFDRshowSimulateDataSimulateData1PSimulateData2PSimulateData3PSimulateDataNPsummary

Dependencies:abindAnnotationDbiaskpassbackportsbase64encbayesmbdsmatrixBHBiobaseBiocGenericsBiocManagerBiostringsbitbit64blobbnlearnbootbroombslibcachemcheckmateclicliprclueclustercodacodetoolscolorspacecompositionscorpcorcpp11crayoncurldata.tableDBIDEoptimRdigestdoParalleldplyrdynamicTreeCutevaluatefansifarverfastclusterfastICAfastmapfontawesomeforcatsforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGGallyggmggplot2ggstatsglmnetglueGO.dbGPArotationgraphgridExtragtablegtoolshavenhighrHmischmshtmlTablehtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjomojquerylibjsonliteKEGGRESTknitrlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixmatrixStatsmemoisemgcvmicemimeminqamitmlmnormtmunsellnetworknlmenloptrnnetnumDerivopensslordinalpanpatchworkpcalgpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspsychpurrrR6rappdirsRBGLRColorBrewerRcppRcppArmadilloRcppEigenreadrRgraphvizrlangrmarkdownrobustbaserpartRSQLiterstudioapiS4Vectorssassscalessfsmiscshapesnastatnet.commonstringistringrsurvivalsystensorAtibbletidyrtidyselecttinytextzdbucminfUCSC.utilsutf8vcdvctrsviridisviridisLitevroomWGCNAwithrxfunXVectoryamlzlibbioczoo

Readme and manuals

Help Manual

Help pageTopics
Adjust the columns of the input matrix same as in the reference matrixAdjustMatrix
Adjusted structural hamming distance (aSHD)aSHD
Comparison of inference accuracy using the same data but with different node orderings.CompareMethodsNodeOrdering
Comparison of inference accuracy of different methods on data with and without a v-structureCompareMethodsVStructure
Cut a numeric variable into intervalsCutModules
Example data under simple and complex modelsdata_examples
GEUVADIS data with 62 eQTL-gene setsdata_GEUVADIS
Combined genotype and gene expression data from 62 eQTL-gene sets in 373 Europeans from GEUVADISdata_GEUVADIS_combined
Example data with outliersdata_with_outliers
Example data without outliersdata_without_outliers
Perform edge orientation under the MRPC algorithmEdgeOrientation
Check empty matrixempty
Identifyprincipal components (PCs) that are significantly associated with eQTLs and genesIdentifyAssociatedPCs
Infer a graph skeleton (undirected graph)ModiSkeleton
Calculate the inverse matrixmpinv
Infer a causal network using the MRPC algorithmMRPC
Class of MRPC algorithm resultsMRPCclass-class plot,MRPCclass,ANY-method print.MRPCclass show,MRPCclass-method summary,MRPCclass-method
Graphs used as truth in simulationMRPCtruth
Plot a dendrogram and display node groups in colored modulesPlotDendrogram
Plot a graph with nodes in modules indicated by colorsPlotGraphWithModules
Calculate recall and precision for two graphsRecallPrecision
Calculate robust correlation matrixRobustCor
Deviation between two graphs represented by two sequencesseqDiff
Sequential FDRSeqFDR
Data for the layered modelsimu_data_layered
Data for Model 0simu_data_M0
Data for Model 1simu_data_M1
Data for Model 2simu_data_M2
Data for Model 3simu_data_M3
Data for Model 4simu_data_M4
Data for the multiple-parent modelsimu_data_multiparent
Data for the star modelsimu_data_starshaped
Simulate data under certain graphsSimulateData
Simulate data for a node with one parentSimulateData1P
Simulate data for a node with two parentsSimulateData2P
Simulate data for a node with three parentsSimulateData3P
Simulate data for a node with no parentSimulateDataNP