Package: MendelianRandomization 0.10.0
MendelianRandomization: Mendelian Randomization Package
Encodes several methods for performing Mendelian randomization analyses with summarized data. Summarized data on genetic associations with the exposure and with the outcome can be obtained from large consortia. These data can be used for obtaining causal estimates using instrumental variable methods.
Authors:
MendelianRandomization_0.10.0.tar.gz
MendelianRandomization_0.10.0.zip(r-4.5)MendelianRandomization_0.10.0.zip(r-4.4)MendelianRandomization_0.10.0.zip(r-4.3)
MendelianRandomization_0.10.0.tgz(r-4.4-x86_64)MendelianRandomization_0.10.0.tgz(r-4.4-arm64)MendelianRandomization_0.10.0.tgz(r-4.3-x86_64)MendelianRandomization_0.10.0.tgz(r-4.3-arm64)
MendelianRandomization_0.10.0.tar.gz(r-4.5-noble)MendelianRandomization_0.10.0.tar.gz(r-4.4-noble)
MendelianRandomization_0.10.0.tgz(r-4.4-emscripten)MendelianRandomization_0.10.0.tgz(r-4.3-emscripten)
MendelianRandomization.pdf |MendelianRandomization.html✨
MendelianRandomization/json (API)
NEWS
# Install 'MendelianRandomization' in R: |
install.packages('MendelianRandomization', repos = c('https://mrcieu.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 8 months agofrom:2e6f8aa6db. Checks:OK: 1 WARNING: 8. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win-x86_64 | WARNING | Nov 16 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 16 2024 |
R-4.4-win-x86_64 | WARNING | Nov 16 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 16 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 16 2024 |
R-4.3-win-x86_64 | WARNING | Nov 16 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 16 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 16 2024 |
Exports:BF_distcalc.rhocalciumcalciumsechdloddschdloddsseci_normalci_tcML_estimatecML_estimate_randomcML_SdThetacondFstatcoursedatadecimalsegger.boundsfastglucfastglucsehdlchdlcsehet.weightinvcov_mvmrldlcldlcselipid_eaflipid_effectlipid_otherloglikelihoodloglikelihoodcorrelloglikelihoodrhocorrelmbe_bootmbe_estmodel.priormr_allmethodsmr_clrmr_cMLmr_conmixmr_divwmr_eggermr_forestmr_funnelmr_hetpenmr_inputmr_ivwmr_lassomr_loomr_maxlikmr_mbemr_medianmr_mvcMLmr_mveggermr_mvgmmmr_mvinputmr_mvivwmr_mvivwmemr_mvlassomr_mvmedianmr_mvpcgmmmr_pcgmmmr_pivwmr_plotmv_normMVcML_SdThetaMVmr_cMLMVmr_cML_DPpenalised.weightspenalised.weights.deltapheno_inputphenoscannerplr.weightsr.weights.deltasimpleCaptrigtrigsevaluesweighted.medianweighted.median.boot.se
Dependencies:arrangementsaskpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tableDEoptimRdigestdplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2glmnetgluegmpgtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsiterpcjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixMatrixModelsmemoisemgcvmimemunsellnlmenumDerivopensslpillarpkgconfigplotlypromisespurrrquantregR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenrjsonrlangrmarkdownrobustbasesassscalesshapeSparseMstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml