Package: mr.simss 0.1.0

Amanda Forde

mr.simss: MR-SimSS: Mendelian Randomisation (MR) method that combats Winner's Curse using a simulated sample splitting approach

Designed to provide users with a method, namely MR-SimSS, which uses simulated sample splitting in order to alleviate Winner's Curse bias in MR causal effect estimates. This approach also takes into account sample overlap between the exposure and outcome genome-wide association studies. It uses summary statistics from genome-wide association studies and works in combination with existing MR methods, such as IVW and MR-RAPS.

Authors:Amanda Forde [aut, cre]

mr.simss_0.1.0.tar.gz
mr.simss_0.1.0.zip(r-4.5)mr.simss_0.1.0.zip(r-4.4)mr.simss_0.1.0.zip(r-4.3)
mr.simss_0.1.0.tgz(r-4.4-any)mr.simss_0.1.0.tgz(r-4.3-any)
mr.simss_0.1.0.tar.gz(r-4.5-noble)mr.simss_0.1.0.tar.gz(r-4.4-noble)
mr.simss_0.1.0.tgz(r-4.4-emscripten)mr.simss_0.1.0.tgz(r-4.3-emscripten)
mr.simss.pdf |mr.simss.html
mr.simss/json (API)

# Install 'mr.simss' in R:
install.packages('mr.simss', repos = c('https://mrcieu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/amandaforde/mr.simss/issues

On CRAN:

4.08 score 4 scripts 4 exports 116 dependencies

Last updated 2 months agofrom:27d81e0378. Checks:OK: 1 WARNING: 6. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winWARNINGOct 25 2024
R-4.5-linuxWARNINGOct 25 2024
R-4.4-winWARNINGOct 25 2024
R-4.4-macWARNINGOct 25 2024
R-4.3-winWARNINGOct 25 2024
R-4.3-macWARNINGOct 25 2024

Exports:est_lambdamr_simsssplit2split3

Dependencies:abindaskpassbase64encbitbit64bootbslibcachemclicliprcodetoolscolorspaceCompQuadFormcowplotcpp11crayoncrosstalkcurldata.tabledigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2glmnetglueGPArotationgridExtragtablehighrhmshtmltoolshtmlwidgetshttrieugwasrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelme4magrittrMASSmathjaxrMatrixmemoisemetametadatmetaformgcvmimeminqamnormtmr.rapsMRMixMRPRESSOmunsellnlmenloptrnortestnumDerivopensslpbapplypillarpkgconfigplotlyplyrpracmaprettyunitsprogresspromisespsychpurrrR6RadialMRrappdirsRColorBrewerRcppRcppEigenreadrreshape2rlangrmarkdownsassscalesshapestringistringrsurvivalsystibbletidyrtidyselecttinytexTwoSampleMRtzdbutf8vctrsviridisLitevroomwithrxfunxml2yaml

Deriving MR-SimSS

Rendered fromderive-MR-SimSS.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-09-24
Started: 2023-11-07

MR-SimSS: The algorithm

Rendered fromMR-SimSS-algorithm.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-09-25
Started: 2024-09-19

Performing MR-SimSS

Rendered fromperform-MR-SimSS.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-09-24
Started: 2023-11-06

Winner's Curse and weak instrument bias in MR

Rendered fromwc_wib.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-09-19
Started: 2024-09-19