Package: simmrd 0.0.0.9000

Noah Lorincz-Comi

simmrd: Simulation of Mendelian Randomization data

This package generates simulation data to use in the evaluation of univariable or multivariable Mendelian Randomization methods. MR scenarios can include uncorrelated horizontal pleiotropy, correlated horizontal pleiotropy, weak instruments, winner's curse, and correlated SNP instruments.

Authors:Noah Lorincz-Comi [aut, cre]

simmrd_0.0.0.9000.tar.gz
simmrd_0.0.0.9000.zip(r-4.5)simmrd_0.0.0.9000.zip(r-4.4)simmrd_0.0.0.9000.zip(r-4.3)
simmrd_0.0.0.9000.tgz(r-4.4-any)simmrd_0.0.0.9000.tgz(r-4.3-any)
simmrd_0.0.0.9000.tar.gz(r-4.5-noble)simmrd_0.0.0.9000.tar.gz(r-4.4-noble)
simmrd_0.0.0.9000.tgz(r-4.4-emscripten)simmrd_0.0.0.9000.tgz(r-4.3-emscripten)
simmrd.pdf |simmrd.html
simmrd/json (API)

# Install 'simmrd' in R:
install.packages('simmrd', repos = c('https://mrcieu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/noahlorinczcomi/simmr/issues

On CRAN:

4.13 score 3 stars 15 exports 71 dependencies

Last updated 8 months agofrom:986323e3c9. Checks:OK: 7. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:adj_overlapar1biggwasclassIVsgenerate_individualgenerate_summarymakeBlocksparthcorrparthstdpfunplot_simdataplot_simdata_lowerpruningsetfstd

Dependencies:abindbackportsBHbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvnfastnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompurrrquantregR6RColorBrewerRcppRcppArmadilloRcppEigenrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

Tutorial

Rendered fromtutorial.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-01-05
Started: 2024-01-05